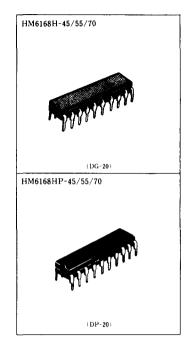
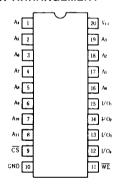

HM6168H-45,HM6168H-55, HM6168H-70,HM6168HP-45, HM6168HP-55,HM6168HP-70

4096-word×4-bit High Speed Static CMOS RAM

FEATURES

- High Speed: Fast Access Time 45/55/70 ns (max.)
- Single +5V Supply and High Density 20 Pin Package
- Low Power Standby and Low Power Operation;
 100μW typ. (Standby), 200mW typ. (Operation)
- Completely Static Memory
 No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Directly TTL Compatible All Inputs and Outputs


FUNCTIONAL BLOCK DIAGRAM


■ABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Rating	Unit
Voltage on Any Pin Relative to GND	VIN	-3.5° to $+7.0$	v
Power Dissipation	Рτ	1.0	w
Operating Temperature	T.pr	0 to +70	°C
Storage Temperature (Ceramic)	Tete	-65 to +150	.c
Storage Temperature (Plastic)	T,te	-55 to +125	°C
Temperature under Bias	T	-10 to +85	·c

^{*} Pulse Width 20ns, DC = -0.5V

■PIN ARRANGEMENT

(Top View)

TRUTH TABLE

CS	WE	Mode	V _{CC} Current	I/O Pin	Reference Cycle
Н	Х	Not selected	I_{SB}, I_{SB1}	High Z	
L	Н	Read	I _{CC}	Dout	Read Cycle 1, 2
L	L	Write	I _{CC}	Din	Write Cycle 1, 2

■ RECOMMENDED DC OPERATING CONDITIONS ($Ta=0 \text{ to } + 70^{\circ}\text{C}$)

Item	Symbol	min	typ	max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
	GND	0	0	0	v
Input Voltage	V _{IH}	2.2	_	6.0	v
	V_{IL}	-0.5*	_	0.8	v

^{* -3.0}V (Pulse width 20ns)

■ DC AND OPERATING CHARACTERISTICS (V_{CC} =5V ±10%, GND=0V, T_a =0 to + 70°C)

Item	Symbol	Test Conditions	min	typ	max	Unit
Imput Leakage Current	\I _{LI} \	V_{CC} =5.5V, V_{in} =GND to V_{CC}	-	-	2.0	μА
Output Leakage Current	IILO I	$\overline{\text{CS}} = V_{IH}, V_{I/O} = \text{GND to } V_{CC}$	-	-	2.0	μА
Operating Power Supply Current	I _{CC}	$CS=V_{IL}, I_{I/O}=0$ mA	-	40	90	mA
Standby Power Supply Current	I _{SB}	$\overline{\text{CS}} = V_{IH}$	_	15	25	mA
Standby Power Supply Current(1)	I _{SB1}	$\overline{\text{CS}} = V_{CC} - 0.2 \text{V}, V_{IN} \leq 0.2 \text{V or } V_{IN} \geq V_{CC} - 0.2 \text{V}$	-	0.02	2.0	m A
Output Low Voltage	VOL	I _{OL} = 8mA	-	_	0.4	v
Output High Voltage	V _{OH}	I _{OH} = -4mA	2.4	_	 	v

Note: Typical limits are at V_{CC} =5.0V, T_a =25°C and specified loading.

■ CAPACITANCE $(T_a = 25^{\circ}C, f = 1MHz)$

Item	Symbol	Test Conditions	min	max	Unit
Input Capacitance	Cin	<i>V</i> _{IN} =0V	-	6	pF
Input/Output Capacitance	$C_{I/O}$	$V_{I/O} = 0V$	_	8	pF

■ AC CHARACTERISTICS (V_{CC} =5V ±10%, T_a =0 to + 70°C, unless otherwise noted.)

AC TEST CONDITION

Input pulse levels; GND to 3.0V

Input rise and fall times: 5ns

Input and Output timing reference levels: 1.5V

Output load: See Figure

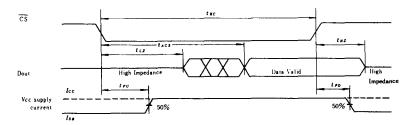
Output Load (A)

* Including scope and jig.

Output Load (B) (for t_{HZ} , t_{LZ} , t_{WZ} , t_{OW})



• READ CYCLE


Item	Symbol	HM6168H/P-45		HM6168H/P-55		HM6168H/P-70		1
		min	max	min	max	min	max	Unit
Read Cycle Time	tRC	45	_	55	_	70	-	ns
Address Access Time	tAA	-	45	_	55	-	70	ns
Chip Select Access Time	tACS	_	45		55	_	70	ns
Output Hold from Address Change	t _{OH}	5	_	5	-	5	-	ns
Chip Selection to Output in Low Z*	t_{LZ}	20		20	_	20	-	ns
Chip Deselection to Output in High Z*	tHZ	0	20	0	20	0	20	ns
Chip Selection to Power Up Time	tPU	0	_	0	_	0	-	ns
Chip Deselection to Power Down Time	t_{PD}	-	30	-	30	-	30	ns

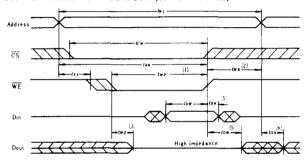
^{*} Transition is measured ±500mV for high impedance voltage with Load (B). This parameter is sampled and not 100% tested.

• TIMING WAVEFORM OF READ CYCLE NO. 1(1), (2)

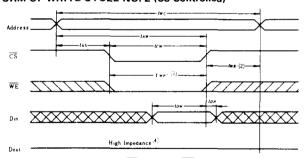
• TIMING WAVEFORM OF READ CYCLE NO. 2(1), (3)

Notes) 1. WE is High for Read Cycle.

2. Device is continuously selected, $\overline{CS} = V_{IL}$.


3. Address Valid prior to or coincident with CS transition Low.

WRITE CYCLE


Item	Symbol	HM6168H/P-45		HM6168H/P-55		HM6168H/P-70		77.14
		min	max	min	max	min	max	Unit
Write Cycle Time	twc	45	-	55	-	70	_	ns
Chip Selection to End of Write	tcw	40	_	50	-	60	_	ns
Address Valid to End of Write	tAW	40	-	50	-	60	_	ns
Address Setup Time	t _{AS}	0	1 -	0	-	0	-	ns
Write Pulse Width	t _{WP}	35	-	45	-	55	-	ns
Write Recovery Time	twR	0	-	0	-	0	-	ns
Data Valid to End of Write	t _{DW}	20	-	25	-	30	_	ns
Data Hold Time	t _{DH}	0	-	0	-	0		ns
Write Enabled to Output in High Z*	twz	0	15	0	20	0	25	ns
Output Active from End of Write*	tow	0	-	0	-	0	-	ns

^{*} Thansition is measured ±500mV from high impedance voltage with Load (B). This parameter is sampled and not 100% tested,

• TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS Controlled)

- Notes) 1. A write occurs during the overlap of <u>a low \overline{CS} </u> and a low \overline{WE} , (t_{WP}) 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must
 - not be applied.

 4. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffer buffers remain in a high impedance state.
 - 5. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to
 - the outputs must not be applied to them.

 6. Dout is the same phase of Write data of this write cycle.