- Meets or Exceeds the Requirements of IBM™ System 360 Input/Output Interface Specification
- Operates From Single 5-V Supply
- TTL Compatible
- Built-In Input Threshold Hysteresis
- High Speed . . . Typical Propagation Delay Time = 20 ns
- Independent Channel Strobes
- Input Gating Increases Application Flexibility
- Designed for Use With Dual Line Driver SN75123
- Designed to Be Interchangeable With Signetics N8T24

1A [16 V_{CC} 1B **1** 2 15 1S 2R 🛮 3 14 🛮 1R 2S [13**∏** 1Y 12 3A 2A ∏ 11 38 2В П 6 2Y 🛮 7 10**∏** 3R GND 8 9 3Y

D OR N PACKAGE (TOP VIEW)

description

The SN75124 triple line receiver is specifically designed to meet the input/output interface specifications for IBM System 360. It is also compatible with standard TTL logic and supply voltage levels.

The SN75124 has receiver inputs with built-in hysteresis to provide increased noise margin for single-ended systems. An open line affects the receiver input as does a low-level input voltage, and the receiver input can withstand a level of -0.15 V with power on or off. The other inputs are in TTL configuration. The S input must be high to enable the receiver input. Two of the line receivers have A and B inputs that, if both are high, hold the output low. The third receiver has only an A input that, if high, holds the output low.

See the SN751730 for new IBM 360/370 interface designs.

The SN75124 is characterized for operation from 0°C to 70°C.

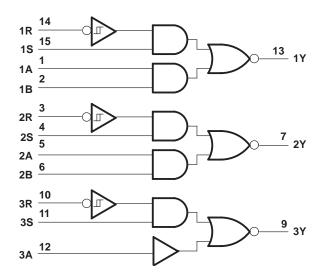
FUNCTION TABLE

	OUTPUT			
Α	в†	R	S	Υ
Н	Н	Х	Χ	L
Х	X	L	Н	L
L	X	Н	Χ	Н
L	X	X	L	Н
Х	L	Н	Χ	Н
Х	L	Χ	L	Н

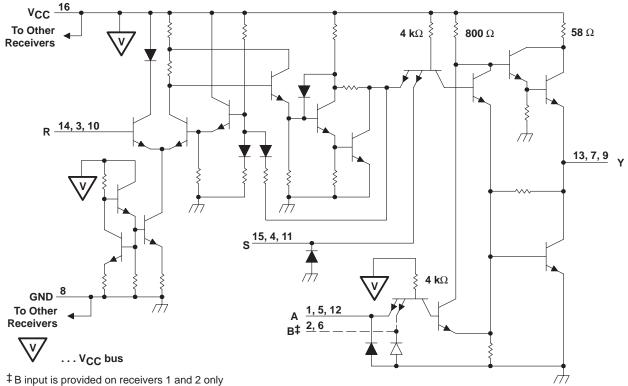
†B input and last two lines of the function table are applicable to receivers 1 and 2 only.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

IBM is a trademark of International Business Machines Corp.



logic symbol[†]


14 & ≥ 1 1R 13 — 1Y 15 18 1 1A 1B 3 2R 2S 7 5 2Y 2A 6 2B ≥ 1 & 10 3R 11 3Y 3S 12 3A

 \dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic (each receiver)

Resistor values shown are nominal.

SLLS058B - SEPTEMBER 1973 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I : R input with V _{CC} applied	
R input with V _{CC} not applied	
A, B, or S input	
Output voltage, V _O	
Output current, IO	±100 mA
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{Stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: Voltage values are with respect to network ground terminal

DISSIPATION RATING TABLE

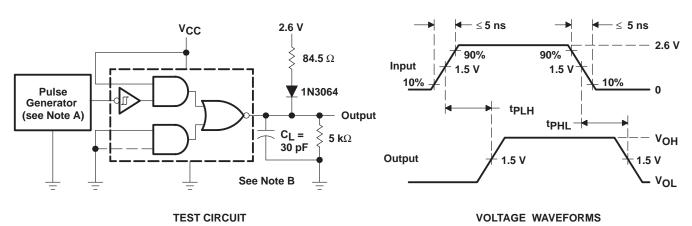
PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING		
D	950 mW	7.6 mW/°C	608 mW		
N	1150 mW	9.2 mW/°C	736 mW		

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High lovel input voltage. V.	A, B, or S	2			V
High-level input voltage, V _{IH}	R	1.7			
Lauria de la	A, B, or S			0.8	V
Low-level input voltage, V _{IL}	R			0.7	V
High-level output current, IOH				-800	μΑ
Low-level output current, IOL				16	mA
Operating free-air temperature, T _A		0		70	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})	R	$V_{CC} = 5 V$,	T _A = 25°C	0.2	0.5		V
VIK	Input clamp voltage	A, B, or S	$V_{CC} = 5 V$,	I _I –12 mA			-1.5	V
V _{I(BR)}	Input breakdown voltage	A, B, or S	$V_{CC} = 5 V$,	I _I = 10 mA	5.5			V
Vон	High-level output voltage		$V_{IH} = V_{IH}$ min, $I_{OH} = -800 \mu A$,	V _{IL} = V _{IL} max, See Note 2	2.6			٧
VOL	Low-level output voltage		V _{IH} = V _{IH} min, I _{OL} = 16 mA,	V _{IL} = V _{IL} max, See Note 2			0.4	٧
1.	Input current at maximum input voltage	R	V _I = 7 V				5	A
11			V _I = 6 V,	VCC = 0			5	mA
1	High level input ourrent	A, B, or S	V _I = 4.5 V				40	
l'IH	High-level input current	R	V _I = 3.11 V				170	μΑ
I _{IL}	Low-level input current	A, B, or S	V _I = 0.4 V,	V _{IR} = 0.8 V	-0.1		-1.6	mA
los	Short-circuit output current [†]				-50		-100	mA
loo	Supply current		All inputs = 0.8 V				72	mA
'cc			All inputs = 2 V				100	IIIA

[†] Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output from R input	See Figure 1		20	30	
tPHL	Propagation delay time, high-to-low-level output from R input	See Figure 1		20	30	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_O \approx 50 \ \Omega$, PRR $\leq 5 \ MHz$, duty cycle = 50%.

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

NOTE 2: The output voltage and current limits are characterized for any appropriate combination of high and low inputs specified by the function table for the desired output.

TYPICAL CHARACTERISTICS

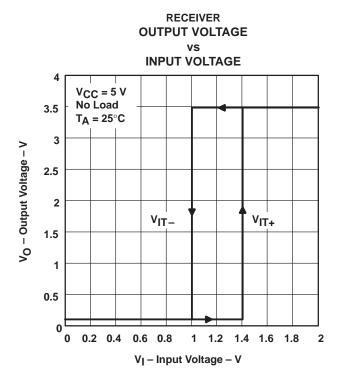


Figure 2

APPLICATION INFORMATION

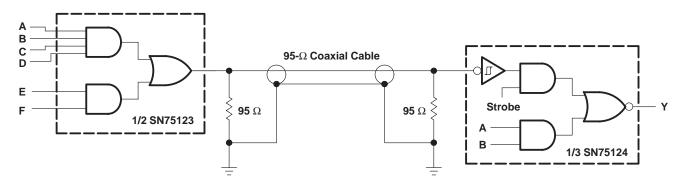


Figure 3. Unbalanced Line Communication Using SN75123 and SN75124