OCTOBER 1976-REVISED DECEMBER 1983

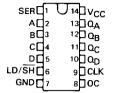
- Sink-Current Capability of 'LS295A
- Schottky-Diode-Clamped Transistors
- Low Power Dissipation . . . 80 mW Typical (Enabled)
- Applications:

N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit Storage Register

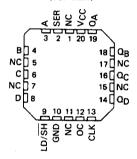
description

These 4-bit registers feature parallel inputs, parallel outputs, and clock (CLK), serial (SER), mode (LD/SH). and outputs control (OC) inputs. The registers have three modes of operation:

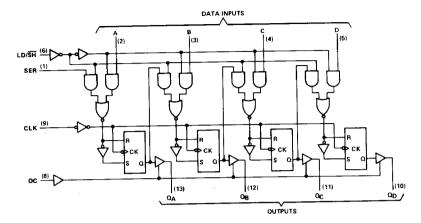
Parallel (broadside) load Shift right (the direction QA toward QD) Shift left (the direction QD toward QA)


Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

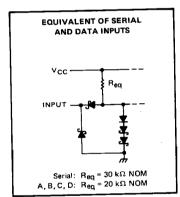
Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D.

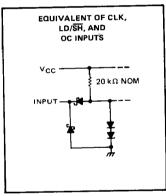

When the output control is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line: however, sequential operation of the registers is not affected.

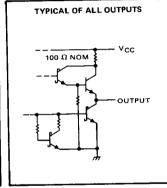
The SN54LS295B is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS295B is characterized for operation from 0°C to 70°C.


SN54LS295B ... J OR W PACKAGE SN74LS295B . . . D, J OR N PACKAGE (TOP VIEW)

SN54LS295B . . . FK PACKAGE SN74LS295B ... FN PACKAGE (TOP VIEW)




NC - No internal connection



Pin numbers shown on logic notation are for D, J or N packages.

schematics of inputs and outputs

3

TTL DEVICES

INPUTS						OUTPUTS					
LD/SH	CLK	SER	PARALLEL								
			Α	В	С	Ð	QA	αв	σ^{C}	αD	
н	н	×	X	х	Х	×	Q _{A0}	α _{B0}	QC0	Ω _{D0}	
н	+	×	а	ь	С	d	а	b	С	d	
Н	. ↓	×	QB+	q_{Ct}	a_{D} t	d	Q _{Bn}	α_{Cn}	Q_{Dn}	d	
L	н	×	x	X	Х	х	Q _{A0}	$oldsymbol{o}_{B0}$	a_{co}	a_{D0}	
L	1	н	x	X	Х	х	н	Q_{An}	Q_{Bn}	α_{Cn}	
L	1	L	X	Х	х	X	L	Q_{An}	Q_{Bn}	Q_{Cn}	

When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

. 7 V
. 7 V
to 125°C
C to 70°C
to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			Sr	SN54LS295B			SN74LS295B		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
loн	High-level output current				– 1		-	- 2.6	mA
OL	Low-level output current				12			24	mA
fclock	Clock frequency		ō		30	0		30	MHz
tw(clock)	Width of clock pulse		16			16			ns
t _{su}	Setup time, high-level or low-level data		20			20			ns
t _{su}	Setup time, LD/SH to CLK	high-level	25			25			
	Setup time, ED/SH to CER	low-level	30			30			ns
th	Hold time, high-level or low-level data		5			5			ns
th	Hold time, high-level or low-level LD/SH to CLK		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

[†]Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions) $\downarrow = transition from high to low level$.

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

 Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} = the level of Q_{A} , Q_{B} , Q_{C} , or Q_{D} , respectively, before the indicated steady-state input conditions were established. Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} = the level of Q_{AO} , Q_{BO} , Q_{CO} , or Q_{DO} , respectively, before the most-recent \downarrow transition of the clock.

TYPES SN54LS295B, SN74LS295B 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54LS295B			SN74LS295B			UNIT
PARAMETER		TEST CONDITIONS [†]			MIN	ТҮР‡	MAX	MIN	TYP‡	MAX	UNI
VIH	High-level input voltage				2			2			V
	Low-level input voltage						0.7	<u> </u>		0.8	V
- 16-	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5	<u> </u>		-1.5	V
	High-level output voltage	V _{CC} = MIN, V _{II} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX		2.4	3.4		2.4	3.1		V
		V _{CC} = MIN,	V _{1H} = 2 V,	OL = 12 mA		0.25	0.4		0.25	0.4	Γ_{v}
v_{OL}	Low-level output voltage	VIL = VIL max	***	I _{OL} = 24 mA					0.35	0.5	Ľ
1	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.7 V	VIL = VIL max,				20			20	μ.
	Off-state output current,	V _{CC} = MAX, V _O = 0.4 V	V _{1H} = 2 V,				-20			- 20	μ,
կ	Input current at maximum input voltage	VCC = MAX,	V ₁ = 7 V				0.1			0.1	<u> </u>
ΊΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V		l		20			20	
11L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4	+		-0.4	+-
los	Short-circuit output current§	V _{CC} = MAX			-30		-130	-30		-130	_
-03_	Supply current	V _{CC} = MAX,	See Note 2	Condition A		20	29		20	29	⊢ m
Icc				Condition B	I	22	33	<u> </u>	22	33	_

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

- A. Output control at 4.5 V and a momentary 3 V, then ground, applied to clock input.
- B. Output control and clock input grounded.

switching characteristics, V_{CC} = 5 V, T_A = 25 C, R_L = 667 Ω

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNI
		30	45		MHz
nax Maximum clock frequency			14	20	ns
LH Propagation delay time, low-to-high-level output	C ₁ = 45 pF,				
HL Propagation delay time, high-to-low-level output	See Note 3		19	30	ns
PZH Output enable time to high level			18	26	ns
ZL Output enable time to low level		ļ	20	30	ns
HZ Output disable time from high level	C _L = 5 pF,	L	13	20	ns
PLZ Output disable time from low level	See Note 3		13	20	ns

NOTE 3: See General Information Section for load circuits and voltage waveforms.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: ICC is measured with the outputs open, the serial input and mode control at 4.5 V, and the data inputs grounded under the following conditions: