

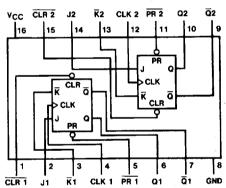
DM74ALS109A Dual J-K Positive-Edge-Triggered Flip-Flop with Preset and Clear

General Description

The DM54ALS109A is a dual edge-triggered flip-flop. Each flip-flop has individual J, \overline{K} , clock, clear and preset inputs, and also complementary Q and \overline{Q} outputs.

Information at input J or \overline{K} is transferred to the Q output on the positive going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. When the clock input is at either the high or low level, the J, \overline{K} input signal has no effect.

Asynchronous preset and clear inputs will set or clear Q output respectively upon the application of low level signal.


The J-K design allows operation as a D flip-flop by tying the J and K inputs together.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin for pin compatible with Schottky and LS TTL counterpart
- Improved AC performance over LS109 at approximately half the power

Connection Diagram

Dual-In-Line Package

TL/F/6196-1
Order Number DM74ALS109AM or DM74ALS109AN

See NS Package Number M16A or N16A

Function Table

Inputs					Outputs		
PR	CLR	CK	J	K	Q	Q_	
L	Н	Х	Х	X	Н	L	
Н	L	Х	Х	X	L	Н	
L	L	Х	X	X	H*	H*	
Н	Н	1	L	L	L	Н	
Н	Н	Ť	Н	L	TOGGLE		
Н	Н	1	L	Н	Q_0	\overline{Q}_{0}	
Н	Н	1	H	Н	Н	L	
н	Н	L	X	· X	Q_0	\overline{Q}_0	

L = Low State, H = High State, X = Don't Care

^{↑ =} Positive Edge Transition, Q₀ = Previous Condition of Q

^{*}This condition is nonstable; it will not persist when present and clear inputs return to their inactive (high) level. The output levels in this condition are not guaranteed to meet the V_{OH} specification.

Absolute Maximum Ratings

Supply Voltage 7V
Input Voltage 7V

Operating Free Air Temperature Range

DM74ALS 0°C to +70°C
Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

N Package 82.5°C/W M Package 111.5°C/W

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

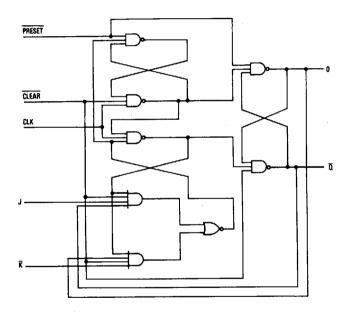
Symbol	Parameter			Units		
			Min	Nom	Max	
V _{CC}	Supply Voltage		4.5	5	5.5	٧
V _{IH}	High Level Input Volt	age	2			٧
V _{IL}	Low Level Input Voltage				0.8	٧
Юн	High Level Output Current				-0.4	mA
l _{OL}	Low Level Output Current				8	mA
fCLK	Clock Frequency		0		34	MHz
tw(CLK)	Pulse Width	Clock High	14.5			ns
		Clock Low	14.5			ns
t _W	Pulse Width	Preset and Clear	15			ns
tsu	Data Setup Time	J or \overline{K}	15↑			ns
		PRE or CLR inactive	10↑			
t _H	Data Hold Time		0↑			ns
TA	Free Air Operating Temperature		0		70	°C

The (↑) arrow indicates the positive edge of the Clock is used for reference.

Electrical Characteristics

over recommended operating free-air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$I_{OH} = -400 \mu\text{A}$ $V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		V _{CC} - 2			٧
V _{OL} Low Level Ou Voltage	Low Level Output Voltage	$V_{CC} = 4.5V$ $V_{IH} = 2V$	54/74ALS I _{OL} = 4 mA		0.25	0.4	V
			74ALS I _{OL} = 8 mA		0.35	0.5	٧
input Current at Max Input Voltage	V _{CC} = 5.5V, V _{IH} = 7V	Clock, J, K			0.1	mA	
		Preset, Clear			0.2		
I _{IH} High Level Input Curren	High Level	V _{CC} = 5.5V, V _{IH} = 2.7V	Clock, J, K			20	μΑ
	Input Current		Preset, Clear			40	
l _{IL} Low Level Input Current	Low Level	el $V_{CC} = 5.5V$,	Clock, J, K			-0.2	mA
	Input Current	$V_{IL} = 0.4V$	Preset, Clear			-0.4	1 mA
I _O (Note 2)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
loc	Supply Current	V _{CC} = 5.5V (Note 1)			2.4	4	mA


Note 1: ICC is measured with J, K, CLK and PRESET grounded, then with J, K, CLK and CLEAR grounded.

Note 2: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit output current, IOS.

Symbol	Parameter	Conditions	From	То	DM74ALS109A		Units
					Min	Max	Oints
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V$			34		MHz
t _{PLH}	Propagation Delay Time Low to High Level Output	$R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF}$	Preset or Clear	Q or Q	3	13	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Preset or Clear	QorQ	- 5	15	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Clock	Q or Q	5	16	กร
t _{PHL}	Propagation Delay Time High to Low Level Output		Clock	QorQ	5	18	ns

Note 1: See Section 5 for test waveforms and output load.

Logic Diagram

TL/F/6196-2