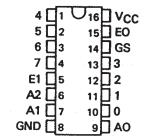
SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

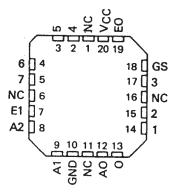
- 3-State Outputs Drive Bus Lines Directly
- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:

 N-Bit Encoding
 Code Converters and Generators
- Typical Data Delay . . . 15 ns
- Typical Power Dissipation . . . 60 mW

description

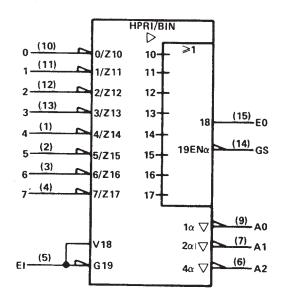

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'LS348 circuits encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion. Outputs A0, A1, and A2 are implemented in three-state logic for easy expansion up to 64 lines without the need for external circuitry. See Typical Application Data.

FUNCTION TABLE


	INPUTS									Ol	JTPU	TS	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	Х	Χ	Х	Χ	X	X	Х	Z	Z	Z	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	z	Z	Z	н	L
L	Х	Х	Х	Х	Х	Χ	Х	L	L	L	L	L	н
L	Х	Х	X	Х	Х	Х	L	Н	L	L	Н	L	н
L	Х	Х	Χ	X	Х	L	Н	Н	L	Н	L	L	н
L	Х	Х	Χ	Х	L	Н	Н	Н	L	Н	Н	L	н
L	Ý	Х	Х	L	Н	Н	Н	Н	н	L	L	L	н
L	Х	Х	L	Н	Н	Н	Н	Н	н	L	н	L	н
L	Х	L	Н	H	Н	Н	Н	Н	н	Н	L	L	н
L	L	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	L	н

H = high logic level, L = low logic level, X = irrelevant

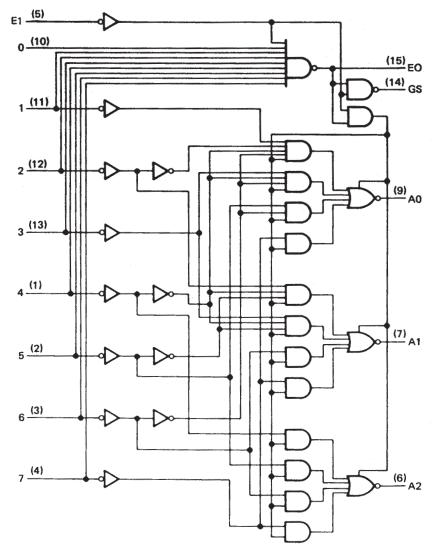
SN54LS348 . . . J OR W PACKAGE SN74LS348 . . . D OR N PACKAGE (TOP VIEW)



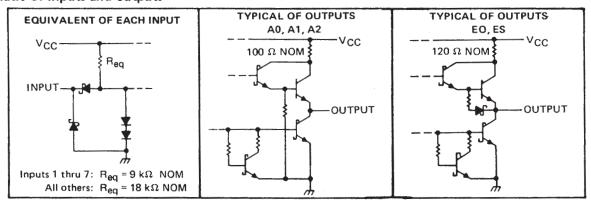
SN54LS348 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol[†]


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


Z = high-impedance state

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematic of inputs and outputs

SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Operating free-air temperature range	SN54LS348
	SN74LS348
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	·	SI	N54LS 3	48	SN74LS348				
		MIN	NOM	MAX	MIN	NOM	MAX	XUNIT	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5,25	V	
High-level output current, IOH	A0, A1, A2			-1			-2.6	mA	
Thigh-level output current, TOH	EO, GS			-400			-400	μΑ	
Low-level output current, IOI	A0, A1, A2			12			24	mA	
	EO, GS			4			8	mA	
Operating free-air temperature, TA		-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COM	SN	154LS3	148	SN74LS348						
	TARAMETER		TEST CONDITIONS†			TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIH	High-level input voltage				2			2			٧	
VIL	Low-level input voltage				**	0.7			0.8	V		
ViK	Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA			-1.5			-1.5	V		
	High-level	A0, A1, A2	V _{CC} = MIN,	I _{OH} = -1 mA	2.4	3.1						
v_{OH}	output voltage	70,71,72	V _{(H} = 2 V,	I _{OH} = -2.6 mA				2.4	3,1		V	
	output voitage	EO, GS	V _{IL} = V _{IL} max	$I_{OH} = -400 \mu A$	2.5	3.4		2.7	3.4			
Voi		A0, A1, A2	V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4		
	Low-level Output voltage	70,71,72	V _{IH} = 2 V,	OL = 24 mA					0.35	0.5	v	
		EO, GS	VIL = VILmax	¹ OL = 4 mA		0.25	0.4		0.25	0.4		
				I _{OL} = 8 mA					0,35	0.5		
loz	Off-State (high-impedance	A0, A1, A2	V _{CC} = MAX,	V _O = 2.7 V			20			20		
.02	state) output current	A0, A1, A2	V _{IH} = 2 V	V _O = 0.4 V			-20			-20	μΑ	
11	Input current at maximum	Inputs 1 thru 7	V _{CC} = MAX,	V. = 7 V			0.2			0,2		
-1	input voltage	All other inputs	ACC - MAY	V - / V			0.1			0.1	mA	
Ιн	High-level input current	Inputs 1 thru 7	V _{CC} = MAX,	V 27V			40			40		
'111	right level hipat carrent	All other inputs	ACC - MAY	V = 2.7 V			20			20	μΑ	
HL	Low-level input current	Inputs 1 thru 7	V NAAY	V: - 0 4 V			-0.8			-0.8		
'1L	Low level input current	All other inputs	V _{CC} = MAX,	V = 0.4 V	-0.4			-0.4	mA			
los	Short-circuit output current §	Outputs A0, A1, A2	V MAY		-30		-130	-30		-130	<u> </u>	
.02	onore oneure output current o	Outputs EO, GS	V _{CC} = MAX		-20		-100	-20		-100	mA	
Icc	Supply current		V _{CC} = MAX,	Condition 1		13	25		13	25		
.00	-uppry current	See Note 2	Condition 2		12	23		12 23		mA		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open. ICC (condition 2) is measured with all inputs and outputs open.

^{\$} All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$.

[§]Not more than one output should be shorted at a time.

SN54LS348, SN74LS348 (TIM9908) 8-LINE TO 3-LINE PRIORITY ENCODERS **WITH 3-STATE OUTPUTS**

SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER [†]	FROM TO WAVEFORM TEST CONDITION		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ФLН	1 thru 7	A0, A1, or A2	In-phase		111	11	17	ns
tPHL.	1 11114 /	A0, A1, 01 A2	output	C = 45 = 5		20	30	113
ФLН	1 thru 7	A0, A1, or A2	Out-of-phase	C _L = 45 pF,		23	35	ns
tPHL	i thru /	AU, A1, 01 A2	output	RL = 667 Ω, See Note 3		23	35	113
tPZH	EI	A0, A1, or A2		See Note 3		25	39	ns
ΨZL] '	70, 71, 01 72				24	41] ""
tPLH	0 thru 7	EO	Out-of-phase			11	18	ns
tPHL	O and /	20	output			26	40	
tPLH	0 thru 7	GS	In-phase	Cլ = 15 pF		38	55	ns
tPHL	O and /		output	$R_{\perp} = 2 k\Omega$,		9	21	1 ""
tPLH	EI	GS	In-phase	See Note 3		11	17	
tPHL	1	43	output	See Note S		14	36	ns
ФLН	EI	EI EO In-phase				17	26	
tPHL	1 "		output			25	40	ns
tPHZ	EI	A0, A1, or A2		CL = 5 pF		18	27	
ヤLZ] -'	70, 71, 01 72		R _L = 667 Ω		23	35	ns

[†] tpLH = propagation delay time, low-to-high-level output

tpzH = output enable time to high level

tpzL = output enable time to low level

tpHZ = output disable time from high level

tpLZ = output disable time from low level

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

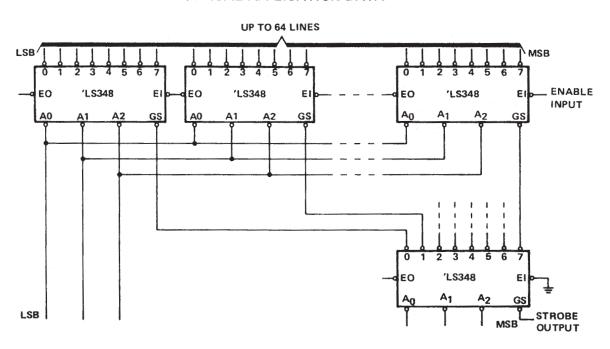


FIGURE 1-PRIORITY ENCODER WITH UP TO 64 INPUTS.

tpHL = propagation delay time, high-to-low-level output

i.com 18-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
JM38510/36002B2A	OBSOLETE	LCCC	FK	20		None	Call TI	Call TI
JM38510/36002BEA	OBSOLETE	CDIP	J	16		None	Call TI	Call TI
SN54LS348J	OBSOLETE	CDIP	J	16		None	Call TI	Call TI
SN74LS348D	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74LS348DR	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74LS348N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS348N3	OBSOLETE	PDIP	N	16		None	Call TI	Call TI
SN74LS348NSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SNJ54LS348FK	OBSOLETE	LCCC	FK	20		None	Call TI	Call TI
SNJ54LS348J	OBSOLETE	CDIP	J	16		None	Call TI	Call TI
SNJ54LS348W	OBSOLETE	CFP	W	20		None	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.