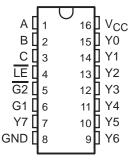
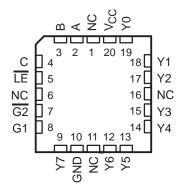
SDAS203C - APRIL 1982 - REVISED JANUARY 1995


- Combines Decoder and 3-Bit Address Latch
- Incorporates Two Output Enables to Simplify Cascading
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

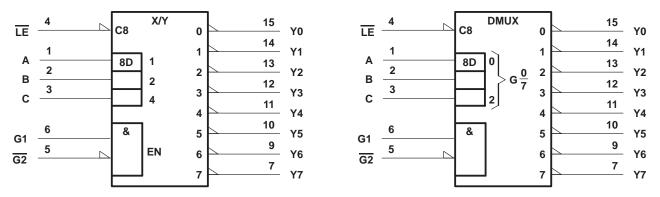
description


SN54ALS137A, SN74ALS137A, The SN74AS137 are 3-line to 8-line decoders/ demultiplexers with latches on the three address inputs. When the latch-enable (LE) input is low, the devices act as decoders/demultiplexers. When LE goes from low to high, the address present at the select (A. B. and C) inputs is stored in the latches. Further address changes are ignored as long as LE remains high. The output-enable controls (G1 and $\overline{G2}$) control the outputs independently of the select or latch-enable inputs. All of the outputs are forced high if G1 is low or $\overline{G2}$ is high. These devices are ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

The SN54ALS137A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS137A and SN74AS137 are characterized for operation from 0°C to 70°C.

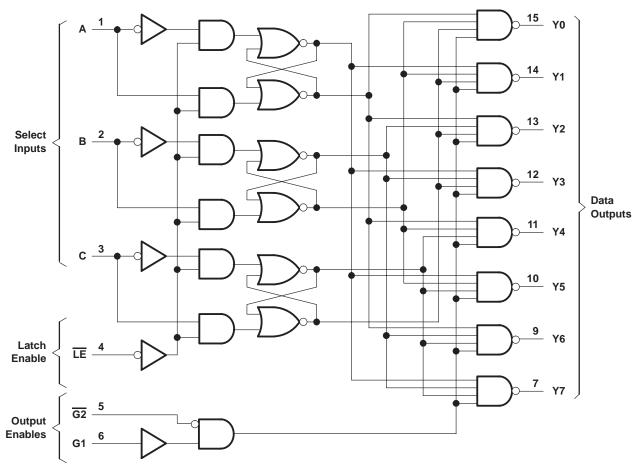
SN54ALS137A . . . J PACKAGE SN74ALS137A, SN74AS137 . . . D OR N PACKAGE (TOP VIEW)

SN54ALS137A . . . FK PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

1		INP	UTS						OUT	PUTS			
I	ENABLE			SELECT	•				001	PU13			
LE	G1	G2	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y 7
Х	Х	Н	Χ	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	L	X	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
L	Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	Н	L	Х	Х	Х	Out	outs corr	espondir	ng to sto	ed addre	ess = L; a	all others	= H


SDAS203C - APRIL 1982 - REVISED JANUARY 1995

logic symbols (alternatives)†

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.

SDAS203C - APRIL 1982 - REVISED JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}		 7 V
Input voltage, V _I		 7 V
Operating free-air temperature range, T _A :	SN54ALS137A	 -55°C to 125°C
	SN74ALS137A	 0°C to 70°C
Storage temperature range		-65°C to 150°C

recommended operating conditions

		SN54ALS137A			SN74ALS137A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-0.4			-0.4	mA
lOL	Low-level output current			4			8	mA
t _W	Pulse duration, LE low	15			10			ns
t _{su}	Setup time at A, B, and C before $\overline{\text{LE}}\uparrow$	15			10			ns
t _h	Hold time at A, B, and C after LE↑	5			5			ns
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

242445		TEST CONDITIONS				SN74ALS137A			
PARAMETER	TEST C	UNDITIONS	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	I _I = –18 mA			-1.5			-1.5	V
Voн	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2	2		VCC -2)		V
V	45.7	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
V _{OL}	V _{CC} = 4.5 V	$I_{OL} = 8 \text{ mA}$				0.35		0.5	V
lį	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
lН	$V_{CC} = 5.5 V$,	V _I = 2.7 V			20			20	μΑ
I _{IL}	$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.1			-0.1	mA
ΙΟ§	$V_{CC} = 5.5 V,$	V _O = 2.25 V	-20		-112	-30		-112	mA
ICC	V _{CC} = 5.5 V			5	11		5	11	mA

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS203C - APRIL 1982 - REVISED JANUARY 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C (C _L : R _L : T _A :	UNIT			
	, ,	(SN54AL	S137A	SN74ALS137A		
			MIN	MAX	MIN	MAX	
t _{PLH}	A D C	Υ	5	25	5	20	ns
^t PHL	A, B, C	Y	6	25	6	20	
t _{PLH}	G 2	Υ	4	15	3	12	
t _{PHL}	G2	Y	5	18	4	15	ns
t _{PLH}	04	Υ	5	21	4	17	
^t PHL	G1	Y	5	19	4	15	ns
^t PLH	ĪĒ	Y	7	27	6	22	20
^t PHL	LE	I	7	25	7	20	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}	7 V
Input voltage, V _I	7 V
Operating free-air temperature range, T _A : SN74AS1370°	C to 70°C
Storage temperature range –65°C	C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

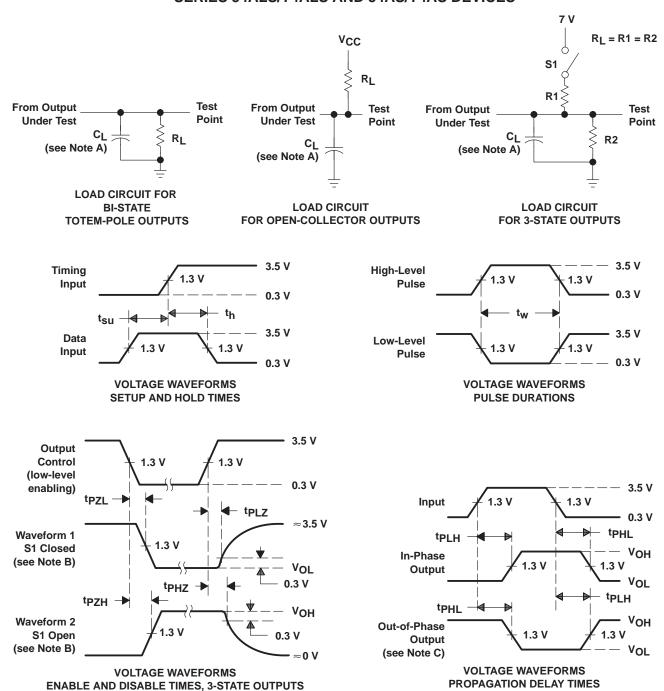
		SN	174AS13	7	
		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
ІОН	High-level output current			-2	mA
loL	Low-level output current			20	mA
t _W	Pulse duration, LE low	6.5			ns
t _{su}	Setup time at A, B, and C before LE↑	4			ns
th	Hold time at A, B, and C after LE↑	1			ns
TA	Operating free-air temperature	0		70	°C

SDAS203C - APRIL 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

24244555	TEOT 00110	UTION O	SI	N74AS13	37	
PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$I_{I} = -18 \text{ mA}$			-1.2	V
V _{OH}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V
V _{OL}	$V_{CC} = 4.5 V$,	$I_{OL} = 20 \text{ mA}$		0.35	0.5	V
lį	$V_{CC} = 5.5 V$,	$V_I = 7 V$			0.1	mA
lін	$V_{CC} = 5.5 V$,	$V_{I} = 2.7 V$			20	μΑ
I _{ΙL}	$V_{CC} = 5.5 V$,	$V_{I} = 0.4 V$			-1	mA
10‡	$V_{CC} = 5.5 V,$	V _O = 2.25 V	-30		- 112	mA
ICC	V _{CC} = 5.5 V			15	24	mA

 $[\]uparrow$ All typical values are at V_{CC} = 5 V, T_A = 25°C.


switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{CC} = 4.5 V to 5.5 V, C_L = 50 pF, R_L = 500 Ω, T_A = MIN to MAX§				
			MIN	MAX			
t _{PLH}	A B C	Υ	2	12.5			
t _{PHL}	A, B, C	Ť	2	12.5	ns		
t _{PLH}	G 2	Υ	2	8			
^t PHL	G2	Y	2	8.5	ns		
t _{PLH}	04	V	2	10			
t _{PHL}	G1	Y	2	9	ns		
^t PLH	ĪĒ	Υ	3	13.5	200		
^t PHL	LE	Ť	3	14	ns		

[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_f = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9066501M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9066501M2A SNJ54 ALS137AFK	Samples
5962-9066501MEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9066501ME A SNJ54ALS137AJ	Samples
5962-9066501MFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9066501MF A SNJ54ALS137AW	Samples
SN74ALS137AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS137A	Samples
SN74ALS137ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS137A	Samples
SN74ALS137ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS137A	Samples
SN74ALS137AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS137AN	Samples
SN74ALS137ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS137AN	Samples
SN74AS137D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74AS137DR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74AS137N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SNJ54ALS137AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9066501M2A SNJ54 ALS137AFK	Samples
SNJ54ALS137AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9066501ME A SNJ54ALS137AJ	Samples
SNJ54ALS137AW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9066501MF A SNJ54ALS137AW	Samples

⁽¹⁾ The marketing status values are defined as follows:

PACKAGE OPTION ADDENDUM

25-Sep-2013

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

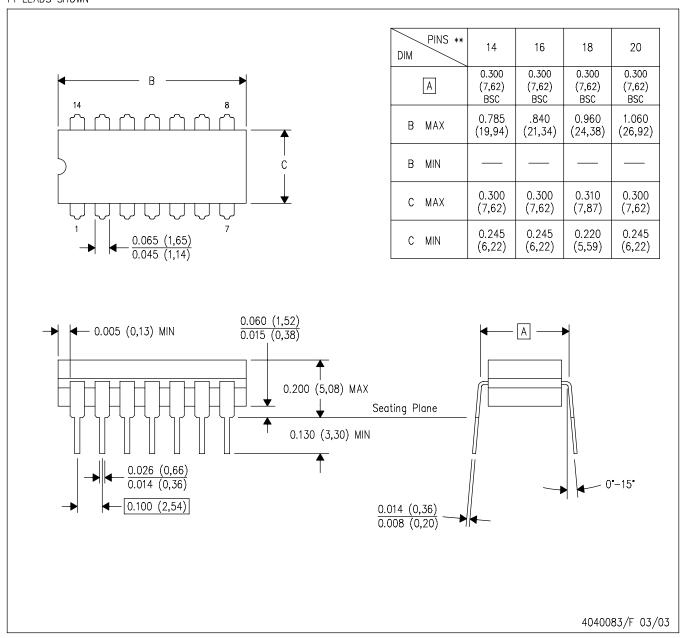
OTHER QUALIFIED VERSIONS OF SN54ALS137A, SN74ALS137A:

Catalog: SN74ALS137A

Military: SN54ALS137A

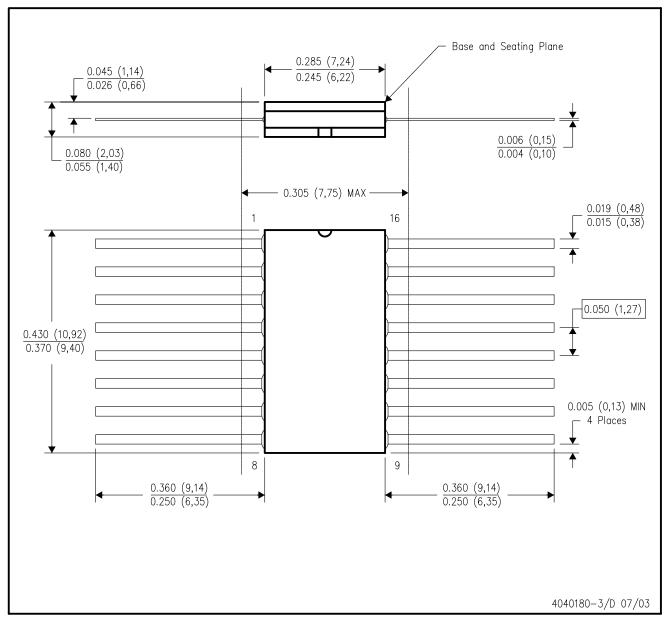
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product



25-Sep-2013

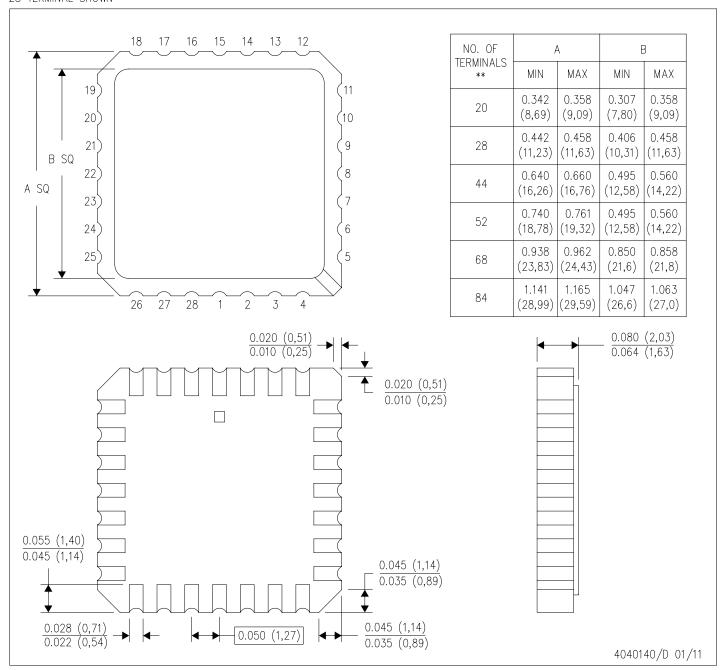
• Military - QML certified for Military and Defense Applications


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

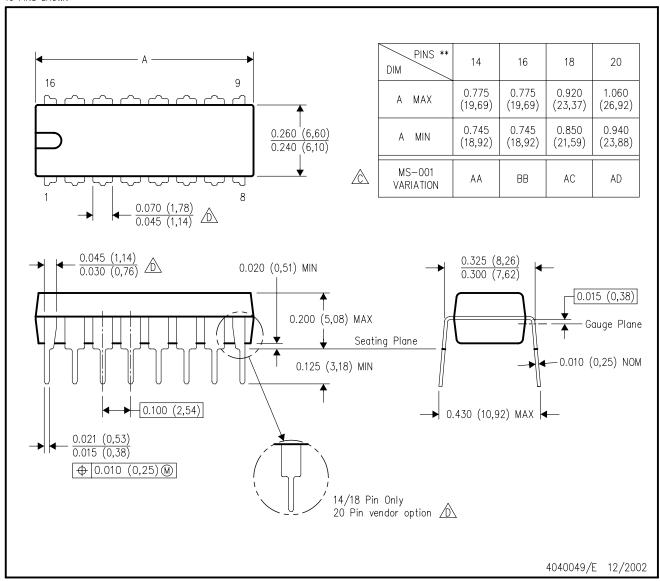
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

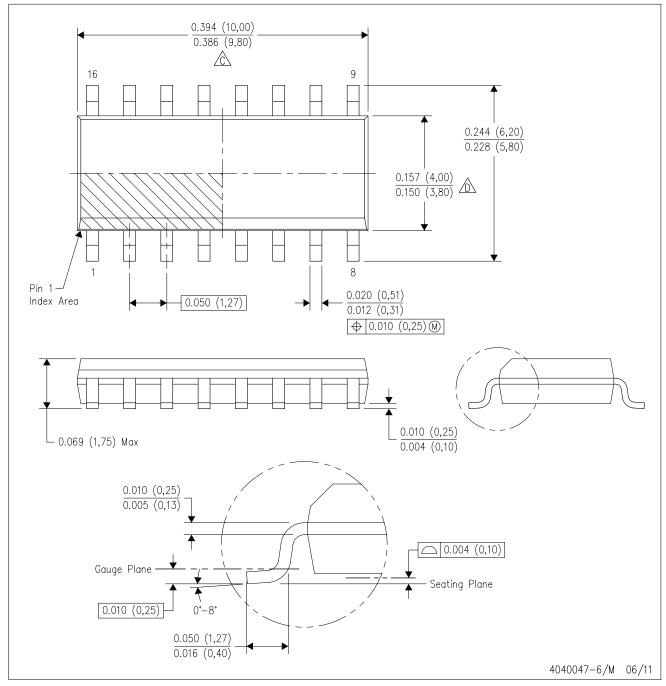
28 TERMINAL SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

