SLVS077A - APRIL 1977 - REVISED AUGUST 1995 - Complete PWM Power Control Circuitry - Uncommitted Outputs for Single-Ended or Push-Pull Applications - Low Standby Current . . . 8 mA Typ - Interchangeable With Silicon General SG2524 and SG3524 ### description The SG2524 and SG3524 incorporate on single monolithic chips all the functions required in the construction of a regulating power supply, inverter, or switching regulator. They can also be used as the control element for high-power-output applications. The SG2524 and SG3524 were designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers, and polarity converter applications employing fixed-frequency, pulse-width-modulation (PWM) techniques. The complementary output allows either single-ended or push-pull application. Each device includes an on-chip regulator, error amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted pass transistors, a high-gain comparator, and current-limiting and shut-down circuitry. The SG2524 is characterized for operation from -25° C to 85° C, and the SG3524 is characterized for operation from 0° C to 70° C. ### AVAILABLE OPTIONS | | INPUT | PACKAGE | DEVICES | CUID FORM | |---------------|------------------------|-------------------|--------------------|------------------| | TA | REGULATION
MAX (mV) | SMALL OUTLINE (D) | PLASTIC DIP
(N) | CHIP FORM
(Y) | | 0°C to 70°C | 30 | SG3524D | SG3524N | SG3524Y | | -25°C to 85°C | 20 | SG2524D | SG2524N | 10=0 | SLVS077A - APRIL 1977 - REVISED AUGUST 1995 ### functional block diagram NOTE A. Resistor values shown are nominal. ### SG3524Y chip information This chip, when properly assembled, displays characteristics similar to the SG3524. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform. SLVS077A - APRIL 1977 - REVISED AUGUST 1995 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} (see Notes 1 and 2) | | 40 | VC | |---|--------|---------------------------|-----| | Collector output current, I _{CC} | | 100 r | nΑ | | Reference output current, IO(ref) | | | | | Current through CT terminal | | | nΑ | | Continuous total power dissipation | | See Dissipation Rating Ta | ble | | Operating free-air temperature range, TA: | SG2524 | 25°C to 85 | °C | | | SG3524 | 0°C to 70 |)°C | | Storage temperature range, T _{stq} | | 65°C to 150 |)°C | | Lead temperature 1,6 mm (1/16 inch) from | | | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to network ground terminal. ### DISSIPATION RATING TABLE | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR | DERATE
ABOVE T _A | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | |---------|---------------------------------------|-----------------|--------------------------------|---------------------------------------|---------------------------------------| | N | 1000 mW | 9.2 mW/ °C | 41°C | 733 mW | 595 mW | | D | 950 mW | 7.6 mW/ °C | 25°C | 608 mW | 494 mW | ### recommended operating conditions | | SG | 2524 | SG3 | 524 | | |----------------------------------|-------|------|-------|-----|------| | | MIN | MAX | MIN | MAX | UNIT | | Supply voltage, V _{CC} | 8 | 40 | 8 | 40 | ٧ | | Reference output current | 0 | 50 | 0 | 50 | mA | | Current through CT terminal | -0.03 | -2 | -0.03 | -2 | mA | | Timing resistor, R _T | 1.8 | 100 | 1.8 | 100 | kΩ | | Timing capacitor, C _T | 0.001 | 0.1 | 0.001 | 0.1 | μF | | Operating free-air temperature | -25 | 85 | 0 | 70 | °C | ^{2.} The reference regulator may be bypassed for operation from a fixed 5-V supply by connecting the V_{CC} and reference output pin both to the supply voltage. In this configuration, the maximum supply voltage is 6 V. $(x_n - \overline{X})^2$ Z Ш 0 SLVS077A - APRIL 1977 - REVISED AUGUST 1995 electrical characteristics over recommended operating free-air temperature range, V_{CC} = 20 V, f = 20 kHz (unless otherwise noted) | 2 | = | | |---|---|--| | 2 | | | | ť | | | | 0 | D | | | 6 | n | | | 5 | 3 | | | • | | | | ٥ | _ | | | Č | D | | | Š | b | | | | | | | 0.12.100 | + | Š | SG2524 | Г | ľ | SG3524 | Г | SG3 | SG3524Y | | |--|---------------------------------|-----|--------|-----|-----|--------|-----|----------|---------|----| | PAKAMEIEK | IES CONDITIONS | MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | MIN TYP‡ | rP‡ MAX | | | Output voltage | | 4.8 | 5 | 5.2 | 4.6 | 5 | 5.4 | | 5 | Λ | | Input regulation | $V_{CC} = 8 V \text{ to } 40 V$ | | 10 | 20 | | 10 | 30 | | 10 | Λm | | Ripple rejection | f= 120 Hz | 2 | 99 | | | 99 | | | 99 | Яþ | | Output regulation | $I_0 = 0$ mA to 20 mA | | 20 | 20 | | 20 | 20 | | 20 | Λm | | Output voltage change with temperature | $T_A = MIN$ to MAX | | 0.3% | 1% | | 0.3% | 1% | | | | | Short-circuit output current8 | $V_{ref} = 0$ | | 100 | | | 100 | | ж | 100 | Αm | | | | | | | | | | | | | For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \pm All typical values, except for temperature coefficients, are at $T_A = 25^{\circ}$ C Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: # oscillator section | | DADAMETED | TI COL | +010 | SG2524, SG3524 | SG3524Y | TIMIT | |-------|--|--|-----------------------------------|----------------|--------------|-------| | | FARAMETER | IEST CONDITIONS | ISNOIL | MIN TYP# MAX | MIN TYP# MAX | | | fosc | Oscillator frequency | $C_T = 0.001 \mu F$, | $R_T = 2 k\Omega$ | 450 | 450 | ZHX | | | Standard deviation of frequency§ | All values of voltage, temperature, resistance, and capacitance constant | temperature,
icitance constant | 2% | %5 | | | 44 | Frequency change with voltage | $V_{CC} = 8 \text{ V to } 40 \text{ V}, T_A = 25^{\circ}C$ | T _A = 25°C | 1% | %1 | | | OSOID | Frequency change with temperature | $T_A = MIN$ to MAX | | 2% | | | | | Output amplitude at OSC OUT | T _A = 25°C | | 3.5 | 3.5 | Λ | | tw | Output pulse duration (width) at OSC OUT | $C_T = 0.01 \mu F$, | T _A = 25°C | 9.0 | 9.0 | s | | | | | | | | | For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. $^{+}$ All typical values, except for temperature coefficients, are at T_{A} = 25°C $^{+}$ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: SLVS077A - APRIL 1977 - REVISED AUGUST 1995 electrical characteristics over recommended operating free-air temperature range, V_{CC} = 20 V, f = 20 kHz (unless otherwise noted) | errora | error amplifier section | | | | | | | | | |--------|--|--------------------------|------------------|----------|------------------|----------|-------|----------|------| | | CLIFFINACIA | +011011111100 | SG2524 | | SG | SG3524 | S | SG3524Y | FILM | | | PAKAMETEK | IES CONDITIONS | ‡dal nim | MAX | MIN | TYP‡ MAX | M | TYP‡ MAX | | | VIO | Input offset voltage | $V_{IC} = 2.5 \text{ V}$ | 5.0 | 2 | | 2 1 | 10 | 2 | Λm | | IIB | Input bias current | $V_{IC} = 2.5 \text{ V}$ | 2 | 10 | | 2 1 | 10 | 2 | μА | | | Open-loop voltage amplification | | 72 80 | | 09 | 80 | | 80 | dВ | | VICR | Common-mode input voltage range | T _A = 25°C | 1.8
to
3.4 | | 1.8
to
3.4 | | | | > | | CMMR | CMMR Common-mode rejection ratio | | 02 | | | 70 | | 70 | dB | | В1 | Unity-gain bandwidth | | 8 | | | 3 | | 3 | MHz | | | Output swing | T _A = 25°C | 9.0 | 3.8 | 0.5 | 3.8 | 8 0.5 | 3.8 | > | | + | The state of s | | | 77.744.5 | | | | | | For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values, except for temperature coefficients, are at T_A = 25°C # output section | | DADAMETED | TOTAL CONTINUES TOTAL | SG2534, SG3524 | | SG3524Y | tion. | | |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|----|--------------|-------|------| | | TANAMETER | LEST CONDITIONS! | MIN TYP# MAX | | MIN TYP‡ MAX | | I NO | | V(BR)CE | (BR)CE Collector-emitter breakdown voltage | | 40 | | | | ^ | | | Collector off-state current | V _{CE} = 40 V | 0.01 | 20 | 0.01 | | μA | | Vsat | Collector-emitter saturation voltage | I _C = 50 mA | 1 | 2 | 1 | | > | | Vo | Emitter output voltage | $V_C = 20 \text{ V},$ $I_E = -250 \text{ µA}$ | 17 18 | | 18 | | > | | tr | Turn-off voltage rise time | R _C = 2 kΩ | 0.2 | | 0.2 | | lls. | | tf | Turn-on voltage fall time | $R_C = 2 k\Omega$ | 0.1 | | 0.1 | | ll s | | + Lor condi | Economistican and and an MAN or MAN visit and accommendation of the control th | and continue a citation of | | | | | | For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values, except for temperature coefficients, are at T_A = 25°C # comparator section | L | GITIMAGAG | +01401410140 | SG2534, SG3524 | SG3524Y | L | |-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------------------|----| | | FARAMEIER | I EST CONDITIONS | MIN TYP# MAX | MIN TYP‡ MAX MIN TYP‡ MAX | 5 | | | Maximum duty cycle, each output | | 45% | | | | 1 | | Zero duty cycle | 1 | 1 | > | | > | Input the shold vollage at COMP | Maximum duty cycle | 3.5 | 3.5 | > | | l _{IB} | Input bias current | | -1 | -1 | γd | | | THE CONTROL OF CO | 2000000 TOTAL 200 CM | | | | † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values, except for temperature coefficients, are at $T_A = 25^{\circ}$ C SLVS077A - APRIL 1977 - REVISED AUGUST 1995 # electrical characteristics over recommended operating free-air temperature range, V_{CC} = 20 V, f = 20 kHz (unless otherwise noted) # current limiting section | LIMIT | | | > | * | Λm | J₀/∧ш | | |-----------------|-----------------|-----|---------------------------------------------------|---|-------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | MAX | | | | 225 | | | | SG3524Y | | | | | 200 | 0.2 | | | S | TYPT NIM | | | | 175 | | | | | MAX | | | | 225 | | | | SG3524 | TYPT | | | | 200 | 0.2 | | | S | MIN TYPT MAX | 1 | to | - | 175 200 | | | | | MIN TYPT MAX | 0 | | 8 | 225 | | | | SG2524 | TYPİ | | | | 200 | 0.2 | | | S | MIN | 1-1 | Q | • | 175 200 | | | | SMOITIGMOD TSET | IESI CONDITIONS | | | | $V(IN+) - V(IN-) \ge 50 \text{ mV},$ | V(COMP) = 2V | (0.00 | | CLITIMYCOYC | FANAMEIEN | | V _I Input voltage range (either input) | | $V(SENSE)$ Sense voltage at $T_A = 25^{\circ}C$ | Temperature coefficient of sense voltage | Const. The second secon | All typical values, except for temperature coefficients, are at $T_A = 25^{\circ}$ C. # total device | _ | ADAMETED | SNOTE CHARGE TABLE | SG2524, SG3524 | SG3524Y | FINE | |-------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|------| | | ANAMEIEN | IEST CONDITIONS | MIN TYPT MAX MIN TYPT | MIN TYPT MAX | _ | | l _{st} S | standby current | V_{CC} = 40 V, IN-, CURR LIM+, CT, GND, COMP, EMIT 1, EMIT 2 grounded IN + at 2 V, All other inputs and outputs open | 8 10 | 8 | mA | † All typical values, except for temperature coefficients, are at TA = 25°C. ### PARAMETER MEASUREMENT INFORMATION Figure 1. General Test Circuit Figure 2. Switching Times ### TYPICAL CHARACTERISTICS Figure 5 ### PRINCIPLES OF OPERATION† The SG2524 is a fixed-frequency pulse-width-modulation voltage-regulator control circuit. The regulator operates at a fixed frequency that is programmed by one timing resistor, R_T, and one timing capacitor C_T. R_T establishes a constant charging current for C_T. This results in a linear voltage ramp at C_T, which is fed to the comparator providing linear control of the output pulse duration (width) by the error amplifier. The SG2524 contains an on-board 5-V regulator that serves as a reference as well as supplying the SG2524 internal regulator control circuitry. The internal reference voltage is divided externally by a resistor ladder network to provide a reference within the common-mode range of the error amplifier as shown in Figure 6, or an external reference may be used. The output is sensed by a second resistor divider network and the error signal is amplified. This voltage is then compared to the linear voltage ramp at C_T. The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output pass transistor (Q1 or Q2) by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to ensure both outputs are never on simultaneously during the transition times. The duration of the blanking pulse is controlled by the value of C_T. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current-limiting and shut-down circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, to compensate the error amplifier, or to provide additional control to the regulator. ### APPLICATION INFORMATION † ### oscillator The oscillator controls the frequency of the SG2524 and is programmed by R_T and C_T as shown in Figure 4. $$f \approx \frac{1.30}{R_T C_T}$$ where R_T is in $k\Omega$ CT is in #F f is in kHz Practical values of C_T fall between 0.001 and 0.1 μ F. Practical values of R_T fall between 1.8 and 100 $k\Omega$. This results in a frequency range typically from 130 Hz to 722 kHz. ### blanking The output pulse of the oscillator is used as a blanking pulse at the output. This pulse duration is controlled by the value of C_T as shown in Figure 5. If small values of C_T are required, the oscillator output pulse duration may still be maintained by applying a shunt capacitance from OSC OUT to ground. ### synchronous operation When an external clock is desired, a clock pulse of approximately 3 V can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately 2 k Ω . In this configuration, R_T C_T must be selected for a clock period slightly greater than that of the external clock. [†] Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION[†] ### synchronous operation (continued) If two or more SG2524 regulators are to be operated synchronously, all oscillator output terminals should be tied together. The oscillator programmed for the minimum clock period is the master from which all the other SG2524s operate. In this application, the C_TR_T values of the slaved regulators must be set for a period approximately 10% longer than that of the master regulator. In addition, C_T (master) = 2 C_T (slave) to ensure that the master output pulse, which occurs first, has a longer pulse duration and subsequently resets the slave regulators. ### voltage reference The 5-V internal reference may be employed by use of an external resistor divider network to establish a reference common-mode voltage range (1.8 V to 3.4 V) within the error amplifiers as shown in Figure 6, or an external reference may be applied directly to the error amplifier. For operation from a fixed 5-V supply, the internal reference may be bypassed by applying the input voltage to both the V_{CC} and V_{REF} terminals. In this configuration, however, the input voltage is limited to a maximum of 6 V. Figure 6. Error Amplifier Bias Circuits ### error amplifier The error amplifier is a differential-input transconductance amplifier. The output is available for dc gain control or ac phase compensation. The compensation node (COMP) is a high-impedance node ($R_L = 5 \, \text{M}\Omega$). The gain of the amplifier is $A_V = (0.002 \, \Omega^{-1}) R_L$ and can easily be reduced from a nominal 10,000 by an external shunt resistance from COMP to ground. Refer to Figure 3 for data. ### compensation COMP, as discussed above, is made available for compensation. Since most output filters introduce one or more additional poles at frequencies below 200 Hz, which is the pole of the uncompensated amplifier, introduction of a zero to cancel one of the output filter poles is desirable. This can best be accomplished with a series RC circuit from COMP to ground in the range of 50 k Ω and 0.001 μ F. Other frequencies can be canceled by use of the formula f \approx 1/RC. [†] Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION[†] ### shut-down circuitry COMP can also be employed to introduce external control of the SG2524. Any circuit that can sink 200 μ A can pull the compensation terminal to ground and thus disable the SG2524. In addition to constant-current limiting, CURR LIM+ and CURR LIM- may also be used in transformer-coupled circuits to sense primary current and shorten an output pulse should transformer saturation occur. CURR LIM- may also be grounded to convert CURR LIM+ into an additional shut-down terminal. ### current limiting A current-limiting sense amplifier is provided in the SG2524. The current-limiting sense amplifier exhibits a threshold of 200 mV \pm 25 mV and must be applied in the ground line since the voltage range of the inputs is limited to 1 V to -1 V. Caution should be taken to ensure the -1 V limit is not exceeded by either input, otherwise damage to the device may result. Foldback current limiting can be provided with the network shown in Figure 7. The current-limit schematic is shown in Figure 8. Figure 7. Foldback Current Limiting for Shorted Output Conditions Figure 8. Current-Limit Schematic † Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION[†] ### output circuitry The SG2524 contains two identical npn transistors, the collectors and emitters of which are uncommitted. Each transistor has antisaturation circuitry that limits the current through that transistor to a maximum of 100 mA for fast response. ### general There are a wide variety of output configurations possible when considering the application of the SG2524 as a voltage regulator control circuit. They can be segregated into three basic categories: - 1. Capacitor-diode-coupled voltage multipliers - 2. Inductor-capacitor-implemented single-ended circuits - 3. Transformer-coupled circuits Examples of these categories are shown in Figures 9, 10 and 11 respectively. Detailed diagrams of specific applications are shown in Figures 12 through 15. Figure 9. Capacitor-Diode-Coupled Voltage-Multiplier Output Stages Figure 10. Single-Ended Inductor Circuit [†] Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION[†] Figure 11. Transformer-Coupled Outputs Figure 12. Capacitor-Diode Output Circuit [†]Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION[†] Figure 13. Flyback Converter Circuit Figure 14. Single-Ended LC Circuit †Throughout these discussions, references to the SG2524 apply also to the SG3524. ### APPLICATION INFORMATION† Figure 15. Push-Pull Transformer-Coupled Circuit [†]Throughout these discussions, references to the SG2524 apply also to the SG3524. ### IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright | 1995, Texas Instruments Incorporated