# **JFET Switching Transistors**

# N-Channel

#### **Features**

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant\*

#### MAXIMUM RATINGS

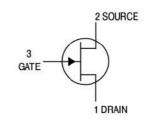
| Rating               | Symbol            | Value | Unit |
|----------------------|-------------------|-------|------|
| Drain-Source Voltage | V <sub>DS</sub>   | 30    | Vdc  |
| Drain-Gate Voltage   | V <sub>DG</sub>   | 30    | Vdc  |
| Gate-Source Voltage  | V <sub>GS</sub>   | 30    | Vdc  |
| Forward Gate Current | I <sub>G(f)</sub> | 50    | mAdc |

#### THERMAL CHARACTERISTICS

| Characteristic                                                                        | Symbol                            | Max         | Unit<br>mW<br>mW/°C |  |
|---------------------------------------------------------------------------------------|-----------------------------------|-------------|---------------------|--|
| Total Device Dissipation FR-5 Board (Note 1) $T_A = 25^{\circ}C$<br>Derate above 25°C | P <sub>D</sub>                    | 225<br>1.8  |                     |  |
| Thermal Resistance, Junction-to-Ambient                                               | R <sub>0JA</sub>                  | 556         | °C/W                |  |
| Junction and Storage Temperature Range                                                | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C                  |  |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. FR-5 =  $1.0 \times 0.75 \times 0.062$  in.




## ON Semiconductor®

http://onsemi.com



SOT-23 **CASE 318** STYLE 10



#### MARKING DIAGRAM



XXX = Specific Device Code

= Date Code\*

= Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation and/or overbar may vary depending upon manufacturing location.

#### MARKING & ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                | Min                                     | Max                 | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                         | 5                   | - The state of the |
| Gate-Source Breakdown Voltage ( $I_G = 1.0 \mu Adc$ , $V_{DS} = 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>(BR)</sub> GSS | 30                                      | =                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gate Reverse Current<br>(V <sub>GS</sub> = 15 Vdc, V <sub>DS</sub> = 0, T <sub>A</sub> = 25°C)<br>(V <sub>GS</sub> = 15 Vdc, V <sub>DS</sub> = 0, T <sub>A</sub> = 100°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSS                   | (24)<br>(27)                            | 1.0<br>0.20         | nAdc<br>µAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gate-Source Cutoff Voltage<br>(V <sub>DS</sub> = 15 Vdc, I <sub>D</sub> = 10 nAdc)<br>MMBF4391LT1, SMMBF4391LT1<br>MMBF4392LT1<br>MMBF4393LT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>GS(off)</sub>  | -4.0<br>-2.0<br>-0.5                    | -10<br>-5.0<br>-3.0 | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Off-State Drain Current<br>(V <sub>DS</sub> = 15 Vdc, V <sub>GS</sub> = -12 Vdc)<br>(V <sub>DS</sub> = 15 Vdc, V <sub>GS</sub> = -12 Vdc, T <sub>A</sub> = 100°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I <sub>D</sub> (off)  | 5786<br>1 <del></del> 1                 | 1.0<br>1.0          | nAdc<br>μAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ON CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * *                   | *                                       | i.                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{split} & \text{Zero-Gate-Voltage Drain Current} \\ & (\text{V}_{DS} = 15  \text{Vdc},  \text{V}_{GS} = 0) \\ & \text{MMBF4391LT1},  \text{SMMBF4391LT1} \\ & \text{MMBF4392LT1} \\ & \text{MMBF4393LT1} \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dss                   | 50<br>25<br>5.0                         | 150<br>75<br>30     | mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{l} \text{Drain-Source On-Voltage} \\ (I_D = 12 \text{ mAdc, V}_{GS} = 0) \\ \text{MMBF4391LT1, SMMBF4391LT1} \\ (I_D = 6.0 \text{ mAdc, V}_{GS} = 0) \\ \text{MMBF4392LT1} \\ (I_D = 3.0 \text{ mAdc, V}_{GS} = 0) \\ \text{MMBF4393LT1} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>DS(on)</sub>   | = = = = = = = = = = = = = = = = = = = = | 0.4<br>0.4<br>0.4   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Static Drain-Source On-Resistance<br>(I <sub>D</sub> = 1.0 mAdc, V <sub>GS</sub> = 0)<br>MMBF4391LT1, SMMBF4391LT1<br>MMBF4392LT1<br>MMBF4393LT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r <sub>DS(on)</sub>   | ₩<br>=<br>=                             | 30<br>60<br>100     | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.</u>              |                                         |                     | <u>.</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Input Capacitance<br>(V <sub>DS</sub> = 0 Vdc, V <sub>GS</sub> = -15 Vdc, f = 1.0 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>iss</sub>      | <b></b>                                 | 14                  | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reverse Transfer Capacitance<br>(V <sub>DS</sub> = 0 Vdc, V <sub>GS</sub> = -12 Vdc, f = 1.0 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>rss</sub>      | =                                       | 3.5                 | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The second secon |                       |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# ORDERING INFORMATION

| Device         | Marking | Package             | Shipping <sup>†</sup> |  |
|----------------|---------|---------------------|-----------------------|--|
| MMBF4391LT1G   | 6J      | SOT-23<br>(Pb-Free) |                       |  |
| SMMBF4391LT1G* | 6J      | SOT-23<br>(Pb-Free) | 0.000 (T 0.D)         |  |
| MMBF4392LT1G   | 6K      | SOT-23<br>(Pb-Free) | 3,000 / Tape & Reel   |  |
| MMBF4393LT1G   | M6G     | SOT-23<br>(Pb-Free) |                       |  |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

Specifications Brochure, BRD8011/D.
\*S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

## TYPICAL CHARACTERISTICS

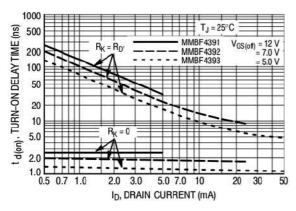
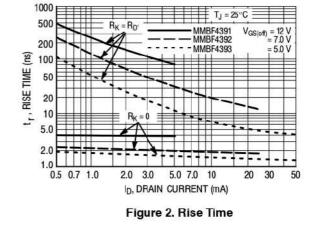




Figure 1. Turn-On Delay Time



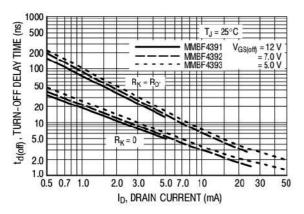



Figure 3. Turn-Off Delay Time

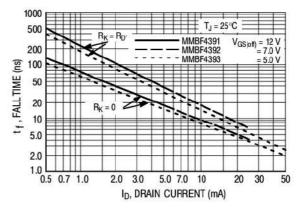



Figure 4. Fall Time

#### ٩٧<sub>DD</sub> $R_D$ SET V<sub>DS(off)</sub> = 10 V INPUT OUTPUT R<sub>GEN</sub> RGG 50 Ω 50 50 Ω $V_{GG}$ Ω INPUT PULSE RGG > RK $t_r \le 0.25 \text{ ns}$ $R_D = R_D(R_T + 50)$ $t_f \le 0.5 \text{ ns}$ PULSE WIDTH = $2.0 \mu s$ $R_D + R_T + 50$ DUTY CYCLE ≤ 2.0%

Figure 5. Switching Time Test Circuit

#### NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage ( $-V_{GG}$ ). The Drain–Source Voltage ( $V_{DS}$ ) is slightly lower than Drain Supply Voltage ( $V_{DD}$ ) due to the voltage divider. Thus Reverse Transfer Capacitance ( $C_{TSS}$ ) of Gate–Drain Capacitance ( $C_{gd}$ ) is charged to  $V_{GG} + V_{DS}$ .

During the tum—on interval, Gate—Source Capacitance ( $C_{gs}$ ) discharges through the series combination of  $R_{Gen}$  and  $R_K$ .  $C_{gd}$  must discharge to  $V_{DS(on)}$  through  $R_G$  and  $R_K$  in series with the parallel combination of effective load impedance ( $R'_D$ ) and Drain—Source Resistance ( $r_{DS}$ ). During the turn—off, this charge flow is reversed.

Predicting turn—on time is somewhat difficult as the channel resistance  $r_{DS}$  is a function of the gate—source voltage. While  $C_{gS}$  discharges,  $V_{GS}$  approaches zero and  $r_{DS}$  decreases. Since  $C_{gd}$  discharges through  $r_{DS}$ , turn—on time is non—linear. During turn—off, the situation is reversed with  $r_{DS}$  increasing as  $C_{gd}$  charges.

The above switching curves show two impedance conditions; 1)  $R_K$  is equal to  $R_{D^{\ast}}$  which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2)  $R_K=0$  (low impedance) the driving source impedance is that of the generator.

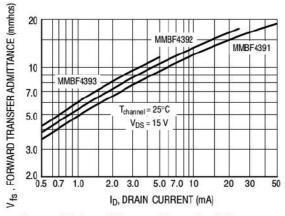



Figure 6. Typical Forward Transfer Admittance

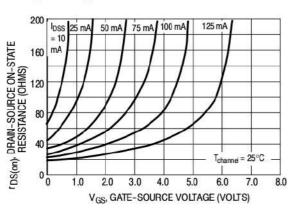



Figure 8. Effect of Gate-Source Voltage on Drain-Source Resistance

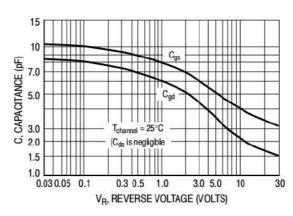



Figure 7. Typical Capacitance

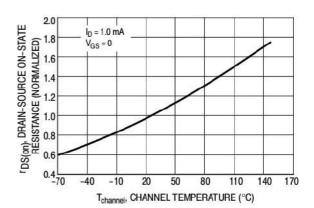



Figure 9. Effect of Temperature on Drain-Source On-State Resistance

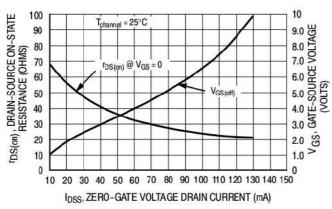
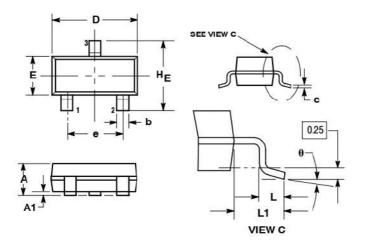



Figure 10. Effect of I<sub>DSS</sub> on Drain-Source Resistance and Gate-Source Voltage

#### NOTE 2

The Zero–Gate–Voltage Drain Current ( $I_{DSS}$ ) is the principle determinant of other J–FET characteristics. Figure 10 shows the relationship of Gate–Source Off Voltage ( $V_{GS(off)}$ ) and Drain–Source On Resistance ( $r_{DS(on)}$ ) to  $I_{DSS}$ . Most of the devices will be within  $\pm 10\%$  of the values shown in Figure 10. This data will be useful in predicting the characteristic variations for a given part number.


For example:

Unknown

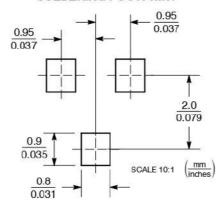
 $r_{DS(on)}$  and  $V_{GS}$  range for an MMBF4392 The electrical characteristics table indicates that an MMBF4392 has an  $I_{DSS}$  range of 25 to 75 mA. Figure 10 shows  $r_{DS(on)}$  = 52  $\Omega$  for  $I_{DSS}$  = 25 mA and 30  $\Omega$  for  $I_{DSS}$  = 75 mA. The corresponding  $V_{GS}$  values are 2.2 V and 4.8 V.

## PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AP



- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
  THICKNESS OF BASE MATERIAL.
- DIMENSIONS DAND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


| DIM | MILLIMETERS |      |      | INCHES |       |       |
|-----|-------------|------|------|--------|-------|-------|
|     | MIN         | NOM  | MAX  | MIN    | NOM   | MAX   |
| Α   | 0.89        | 1.00 | 1.11 | 0.035  | 0.040 | 0.044 |
| A1  | 0.01        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |
| b   | 0.37        | 0.44 | 0.50 | 0.015  | 0.018 | 0.020 |
| c   | 0.09        | 0.13 | 0.18 | 0.003  | 0.005 | 0.007 |
| D   | 2.80        | 2.90 | 3.04 | 0.110  | 0.114 | 0.120 |
| E   | 1.20        | 1.30 | 1.40 | 0.047  | 0.051 | 0.055 |
| e   | 1.78        | 1.90 | 2.04 | 0.070  | 0.075 | 0.081 |
| L   | 0.10        | 0.20 | 0.30 | 0.004  | 0.008 | 0.012 |
| L1  | 0.35        | 0.54 | 0.69 | 0.014  | 0.021 | 0.029 |
| HE  | 210         | 2.40 | 2.64 | 0.083  | 0.094 | 0.104 |
| θ   | O=          |      | 10°  | O°     |       | 10°   |

STYLE 10: PIN 1. DRAIN

2. SOURCE

GATE

#### SOLDERING FOOTPRINT



ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make charges without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in offerent applications and actual performance may vary over time. All operating parameters, including "Typical"s must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights operating parameters, including Typicas must be waithdated for each customer application by customer is parent in grints of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical impaint into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative