

HLK-B26 BLE mesh模块 使用手册

目录

1. 产品简介	1
2. 产品特点	1
3. 应用场景	1
4. 引脚定义	2
5. 性能和电气参数	2
6. OTA升级	3
7. 硬件准备	4
8. 使用nRF Mesh APP进行配网和通信	5
9. AT指令	9
9.1 AT指令格式说明	9
9.2 AT指令列表说明	10
9.3 指示列表说明	11
9.4 指示灯状态	11
10. 组网测试示例	12
10.1 室内密集测试	12
10.1.1 测试内容	12
10.1.2 测试环境	12
10.1.3 测前准备	13
10.1.4 测试方法	13
10.1.5 测试数据	13
10.1.6 测试结论	15
10.2 室外拉距测试	15
10.2.1 测试内容	15
10.2.2 测试环境	15
10.2.3 测前准备	16
10.2.4 测试方法	17
10.2.5 测试数据	17
10.2.6 测试结论	18
11. 修订记录	10

1. 产品简介

HLK-B26是海凌科电子开发生产的一款BLE5.0mesh模块,各种带有串口的设备通过本模块,都能够简单快速的使用蓝牙mesh无线收发数据。

本产品可以和APP进行一对一通信,也可以通过APP进行一对多通信,还可以多对多进行通信。 支持AT命令模式,可通过串口AT命令查询或设置模块的基本参数,如串口波特率等。

2. 产品特点

- 主频96MHz, 32bit
- 串口波特率可达921600
- 基于BLE5.0,速度更快,传输距离更远
- 支持OTA蓝牙无线升级模块固件,无线配置模块参数
- 默认板载天线,控制极低成本,在低成本条件下有较强的无线信号
- 宽工作电压 1.8V to 4.2V, 典型值 3.0V

3. 应用场景

HLK-B26提供的蓝牙mesh传输,提供了一个简单灵活的数据通道,可广泛应用于各种需要通过蓝牙 mesh无线传输数据的产品中。

常用的应用场景举例如下:

● 智慧家居/家电

通过手机或者其他设备控制智能插座、智慧灯控、智能门锁等

● 物联网

手机和设备,设备和设备间无线传输数据

● 工农业控制

通过蓝牙无线连接各种控制或传感设备,进行读取和控制等

● 智慧城市/园区

在一定范围内的路灯控制、数据传输等

● 更多应用场景等待您去开发

4. 引脚定义

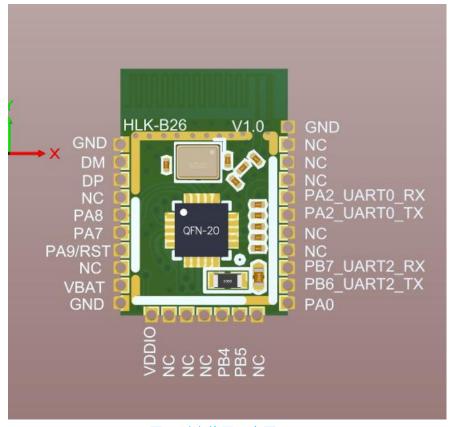


图 1 引脚位置示意图

5. 性能和电气参数

供电和功耗	供电输入要求	DC 1.8~4.2V,典型值3.0V,供电能力>80mA
	波特率	9600,19200,38400, 115200,230400,460800,921600
串口参数	数据位	8
	停止位	1
	频率	2402 ~ 2480MHz
	发射功率	-20~8dBm可调
蓝牙参数	接收灵敏度	-92dBm
规范标准 Bluetooth V5.0 mesh		Bluetooth V5.0 mesh
工作环境	工作温度	-40 ~ 85°C
尺寸封装	外形尺寸	长14mm×宽9.5mm×高2mm

表 2 性能和电气参数表

6. OTA升级

本模组支持OTA更新固件,安卓版支持从本地读取固件内容并更新到模组中。

升级前,请从确保将正确的要升级的固件的升级ufw文件下载到手机中。

点击<请选ufw文件>,在弹出的页面中选择要升级的ufw文件,然后点击开始升级,APP将开始检查并升级固件,升级过程中APP有日志提示,升级成后会提示升级完成。

*******不正确的OTA升级升级文件和操作,可能会使模块固件损坏无法启动,请谨慎操作 *****

图 2 OTA升级

在参数配置页面中,长按软件版本位置,可进入OTA升级页面。选择固件后即可开始升级。

7. 硬件准备

● 以HLK-B40/B50-KIT-V1.1(图3)或者HLK-B40-KIT-V1.1(图4)为测试底板,如下图所示

图3

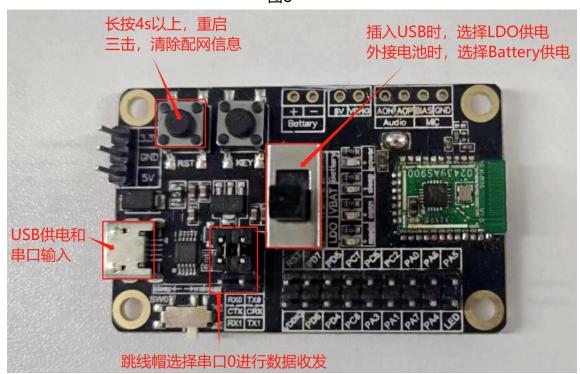
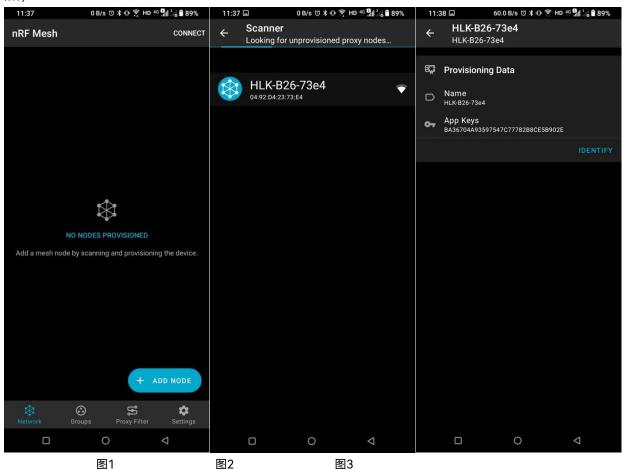
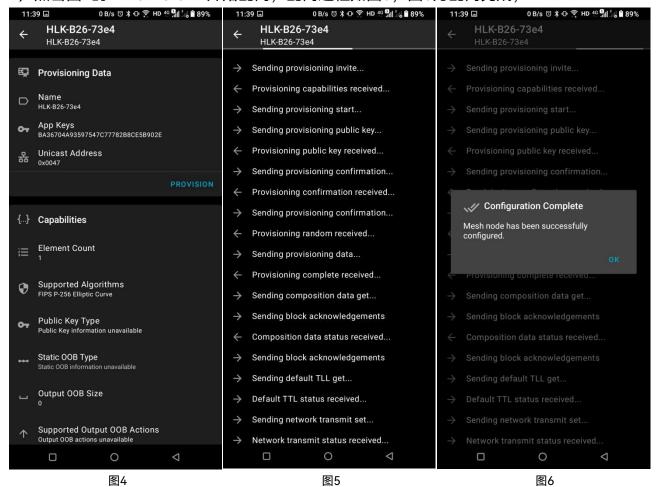


图4

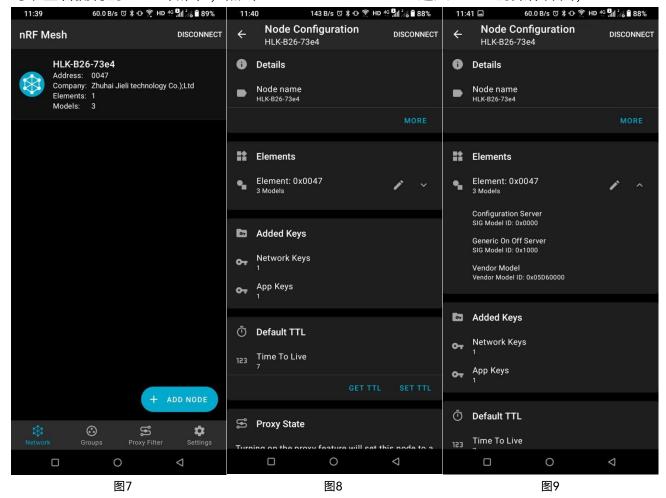


8. 使用nRF Mesh APP进行配网和通信

蓝牙广播名称: HLK-B26-xxxx(xxxx表示蓝牙mac地址的后两个字节)

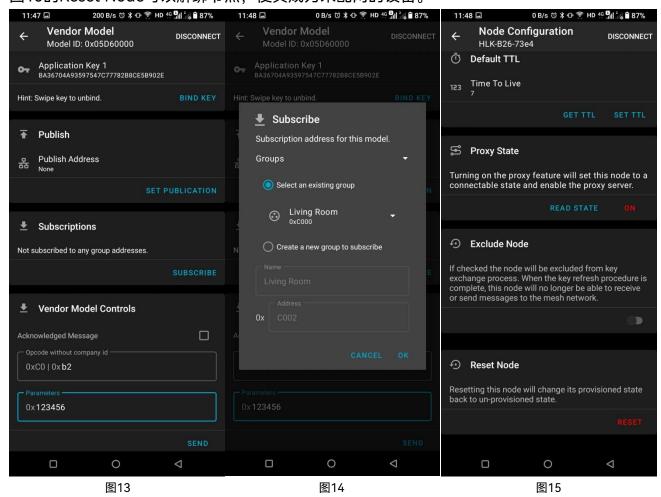

配网步骤如下:

1) 图1为软件首页,点击蓝色+号进行扫描mesh设备;图2为扫描到的mesh设备列表,点击列表里的设备会进入图3确认设备名称和APP密钥,APP密钥可以在settings里面更改或者添加:



2) 点击图4的"PROVISION"开始配网,配网过程如图5,图6为配网完成;

3) 配好网的节点如图7显示,点击节点进入图8查看信息和操作,点击Element右侧下拉按钮可以查看拥有的model如图9,点击Generic On Off Server进入model的操作界面;


4)要对model进行控制之前需要绑定密钥,点击图10"BIND KEY"选择密钥,密钥绑定完成如图11所示,之后就可以通过图12进行开关控制了。

5) 数据透传为Vendor Model,绑定好密钥之后可以在图13的Opcode without company id 输入b2,然后在Parameters输入要透传的十六进制数据,点击SEND即可发送,节点收到后会在串口输出数据,数据格式看第二节的串口命令。

图14可以为节点订阅组地址, 使其可以接收组播消息;

图15的Reset Node可以解绑节点,使其成为未配网的设备。

至此,节点之间的配网已完成,接下来可以在节点使用AT命令进行发送数据了。

9. AT 指令

串口波特率 115200, 8N1 格式,支持单播、组播和广播传输方式。

9.1 AT 指令格式说明

所有AT指令内容均为ASCII码字符串格式,指令以回车换行符结尾。 设置后掉电不丢失,所有设置都使在重启后才会生效。

查询类指令:

发送	应答
AT+ <cmd>=?\r\n</cmd>	查询成功:
	AT+ <cmd>=<val>\r\n</val></cmd>
	OK\r\n
	或者查询失败:
	AT+ <cmd>=<val>\r\n</val></cmd>
	ERROR\r\n

设置类指令:

发送	应答
AT+ <cmd>=<val>\r\n</val></cmd>	设置成功:
	AT+ <cmd>=<val>\r\n</val></cmd>
	OK\r\n
	或者设置失败:
	AT+ <cmd>=<val>\r\n</val></cmd>
	ERROR\r\n

\r\n代表ASCII码: 0x0D 0x0A

9.2 AT 指令列表说明

编号	命令名	说明	参数范围	实例		
				发送	应答	
1	1 VER 软件版本号 只读	AT+VER=?	AT+VER=HLK-B26,1.4			
'		7/11/K/T-3	以中		ОК	
				发送	应答	
2	2 MAC	MAC地址	 只读	AT+MAC=?	AT+MAC=b74e8d2dde43	
- .		I I I I I I I I I I I I I I I I I I I	, , , , , , , , , , , , , , , , , , ,		OK	

				发送	应答	
3	REBOOT	重启模块	1	AT+REBOOT=1		
4	BAUD	串口 波特率	9600,19200,38400,115200,23 0400,460800,921600 默认值: 115200	发送 AT+BAUD=? 发送 AT+BAUD=23040		应答 AT+BAUD=115200 OK 应答 AT+BAUD=230400 OK
5	NR	删除节点配网 信息	1	发送 AT+NR=1	应 AT OH	T+NR=1
6	STA	获取配网状态	只读 0 未配网 1 已配网	发送 AT+STA=?	应答 AT+: OK	STA=1
7	NADDR	获取节点地址	只读 0000 未分配地址 xxxx 已分配地址	发送 AT+NADDR=?	应答 AT+l OK	NADDR=0002
8	DTW	发送数据到指 定地址	AT+DTW=daddr,len,data[,aki] daddr 目的地址 len 数据长度 data 十六进制数据 aki APP密钥下标,可选项,默认为0	发送 应答 AT+DTW=0002,2,12 AT+DTW=0002,2,13 OK		AT+DTW=0002,2,12

9.3 指示列表说明

编号	命令名	说明	参数范围	实例
1	+RECV	收到数据	+RECV:saddr,daddr,len,data saddr 源地址 daddr 目的地址 len 数据长度 data 十六进制数据	格式 +RECV:0001,0002,2,12

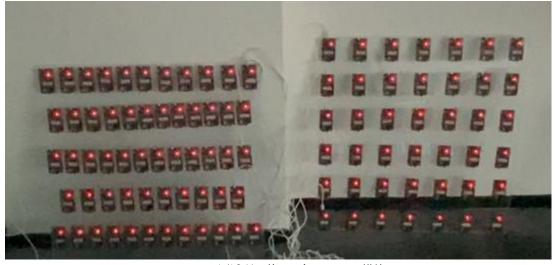
9.4 指示灯状态

- 1) 未绑定时指示灯 1 秒闪烁 2 次, 绑定时指示灯灭;
- 2) 接收到透传数据时指示灯双闪。

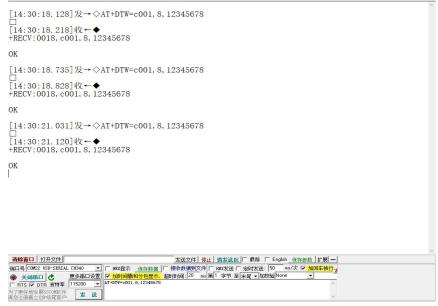
10.组网测试示例

默认支持 200 个节点, 单包数据量为 8 个字节的稳定性是最好的, 延迟性是最低的, 超过 8 个字节会分包, 会影响稳定性和增加接收延迟, 最大单包数据量为 60 个字节。

10.1 室内密集测试


10.1.1 测试内容

100 个 HLK-B26 组网功能测试, 在不同条件下的稳定性。


10.1.2 测试环境

单个HLK-B26模块

测试所用的100个HLK-B26模块

接收/发送数据所用的串口调试工具

10.1.3 测前准备

将 100 个 B26 模块绑定同一网络及同一密钥,并将所有模块都添加到同一个组,记录下组地址,随机选取一个模块并通过串口连接到电脑串口调试工具,打开串口调试工具查看串口接收数据的情况。

10.1.4 测试方法

用一个 HLK-B26 通过电脑调试工具发送 AT 指令给其余 99 个进行组播与单播,分别以不同的速率进行数据传送,记录下透传成功率。

10.1.5 测试数据

组播 2000ms/8 字节

序号	测试内容	结果	备注
1	通过串口调试工具给组	√	
2	地址以每 2000ms 发	\checkmark	
3	送 8 字节的速率进行	\checkmark	
4	透传,通过观察模块指	√	
5	示灯以及模块串口接收	√	
6	情况记录前十次透传成	√	

7	功率	√	
8		√	
9		√	
10		√	

组播 500ms/8 字节

序号	测试内容	结果	备注
1		√	
2		√	
3	通过串口调试工具给组	√	
4	地址以每 500ms 发送	√	
5	8 字节的速率进行透	√	
6	传,通过观察模块指示 灯以及模块串口接收情	√	
7	况记录前十次透传成功	\checkmark	
8	ルル水削 I 人 透 1 人 成 り	√	
9		√	
10		√	

单播 2000ms/8 字节

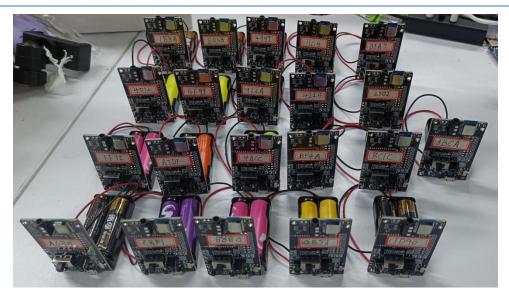
序号	测试内容	结果	备注
1		√	
2	通过串口调试工具给模		
3	块地址以每 2000ms	\checkmark	
4	发送 8 字节的速率进	\checkmark	
5	行透传,通过模块串口	√	
6	接收情况记录前十次透	√	
7	传成功率	√	
8		√	

9	√	
10		

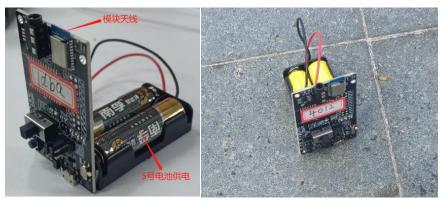
单播 500ms/8 字节

序号	测试内容	结果	备注
1		√	
2		√	
3	通过串口调试工具给模	\checkmark	
4	块地址以每 500ms 发	\checkmark	
5	送 8 字节的速率进行	\checkmark	
6	透传,通过模块串口接	\checkmark	
7	收情况记录前十次透传	\checkmark	
8	成功率	\checkmark	
9		\checkmark	
10		√	

10.1.6 测试结论


据测试, 100 个模块在 2000ms/8 字节、500ms/8 字节的速率进行组播、单播时透传都比较稳定, 在组播以 500ms 发送 8 字节进行透传时会有延迟接收的情况, 并无丢包现象。

10.2 室外拉距测试


10.2.1 测试内容

空旷环境下 HLK-B26 mesh 模块在不同条件(节点间距离、发送频率、发送字节数)下中继信息的丢包率和延时性测试。

10.2.2 测试环境

测试所用的 HLK-B26 模块 (21 个)

单个模块置地摆放

测试场地

10.2.3 测前准备

将 21 个 B26 模块通过手机 nrf mesh APP 绑定在同一网络和同一密钥下, 使之两两之间可以互相通信,首尾两个节点分别用数据线连接手机,通过 USB 调试宝 APP 来收发数据。

10.2.4 测试方法

将 21 个模块每隔 10 米放地上围一个圈开环摆放,首尾两个模块相距大约 200 米以确保无法直接通信,起点模块通过 USB 调试宝 APP 给终点模块发送数据,分别以不同频率和字节数进行发送,记录发送成功率及统计延时性。

10.2.5 测试数据

1000ms/8 字节

序号	测试内容	接收结果	延时时间	备注
1		√	约 2s	
2		V		
3	通过串口让首模块给尾模块以 1000ms 发送8 字节的速度持续发送数据,记录前十次的发送			
4		$\sqrt{}$		
5				
6		√		
7		√		
8		√		
9		√		
10		√		

500ms/8 字节

序号	测试内容	结果	延时时间	备注
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√		
2	通过串口让首模块给尾	√		
3	模块以 500ms 发送 8字节的速度持续发送数据, 记录前十次的发送结果	√	约 3s	
4		√		
5		√		
6		√		

7	\checkmark	
8	X	
9		
10		

1000ms/10 字节

序号	测试内容	结果	延时时间	备注
1		√	3-5s	
2		√		
3	通过串口让首模块给尾模块以 1000ms 发送10 字节的速度持续发送数据,记录前十次的发送结果	\checkmark		
4		X		
5		\checkmark		
6		\checkmark		
7		\checkmark		
8		X		
9		\checkmark		
10		√		

10.2.6 测试结论

经过以上几种情况的测试, 21 个模块在室外的组网测试中, 1s 发送 8 个字节的数据量是最稳定的, 当以不同的速率和数据量进行传输时, 延时性普遍在 2-5s, 丢包率在 20%以内。

11.修订记录

日期	版本	修改内容
20231101	1.0	初始版本