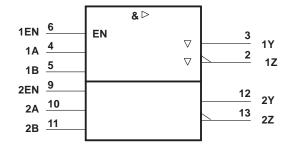
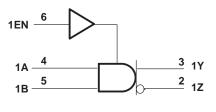

- Meets or Exceeds the Requirements of ANSI EIA/TIA-422-B and ITU Recommendation V.11
- Single 5-V Supply
- Balanced Line Operation
- TTL Compatible
- High-Impedance Output State for Party-Line Applications
- High-Current Active-Pullup Outputs
- Short-Circuit Protection
- Dual Channels
- Clamp Diodes at Inputs

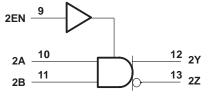
D OR N PACKAGE (TOP VIEW)


NC-No internal connection

description

The SN75159 dual differential line driver with 3-state outputs is designed to provide all the features of the SN75158 line driver with the added feature of driver output controls. There is an individual control for each driver. When the output control is low, the associated outputs are in a high-impedance state and the outputs can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.


The SN75159 is characterized for operation from 0°C to 70°C.


logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 \
Input voltage, V _I	
Off-state voltage applied to open-collector outputs	
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			V
Low-level input voltage, V _{IL}			0.8	V
High-level output voltage, IOH			-40	mA
Low-level output current, I _{OL}			40	mA
Operating free-air temperature, T _A	0		70	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values except differential output voltage VOD are with respect to the network ground terminal. VOD is at the Y output with respect to the Z output.

SN75159 **DUAL DIFFERENTIAL LINE DRIVER** WITH 3-STATE OUTPUTS

SLLS088B - JANUARY 1977 - REVISED MAY 1995

electrical characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
VIK	Input clamp voltage	V _{CC} = 4.75 V,	$I_{I} = -12 \text{ mA}$			-0.9	-1.5	V
VOH	High-level output voltage	V _{CC} = 4.75 V, V _{IH} = 2 V,	$V_{IL} = 0.8 \text{ V},$ $I_{OH} = -40 \text{ mA}$		2.4	3		٧
VOL	Low-level output voltage	V _{CC} = 4.75 V, V _{IH} = 2 V,	V _{IL} = 0.8 V, I _{OL} = 40 mA			0.25	0.4	V
Voк	Output clamp voltage	V _{CC} = 5.25 V,	$I_O = -40 \text{ mA}$			-1.1	-1.5	V
VO	Output voltage	$V_{CC} = 4.75 \text{ V to } 5.25 \text{ V},$	IO = 0		0		6	V
V _{OD1}	Differential output voltage	$V_{CC} = 5.25 \text{ V},$	I _O = 0			3.5	2V _{OD2}	V
VOD2	Differential output voltage	V _{CC} = 4.75 V			2	3		V
∆IVODI	Change in magnitude of differential output voltage‡	V _{CC} = 4.75 V				±0.02	±0.4	٧
Vaa	Common-mode output	V _{CC} = 5.25 V	$R_{I} = 100 \Omega$	See Figure 1		1.8	3	V
Voc	voltage§	V _{CC} = 4.75 V] K = 100	See Figure 1		1.5	3	V
∆IVocI	Change in magnitude of common-mode output voltage‡	V _{CC} = 4.75 V to 5.25 V] [±0.01	±0.4	٧
			V _O = 6 V			0.1	100	
I _O	Output current with power off	VCC = 0	$V_0 = -0.25 \text{ V}$			-0.1	-100	μΑ
			$V_0 = -0.25 \text{ V to 6 V}$				±100	
			T _A = 25°C	$V_O = 0$ to V_{CC}			±10	
	Off state (high image days a	V 505V		VO = 0			-20	
loz	Off-state (high-impedance state) output current	V _{CC} = 5.25 V, Output controls at 0.8 V	T _A = 70°C	V _O = 0.4 V			±20	μΑ
	, , , , , , , , , , , , , , , , , , , ,			V _O = 2.4 V			±20	
				AO = ACC			20	
H	Input current at maximum input voltage	V _{CC} = 5.25 V,	V _I = 5.5 V				1	mA
ΙΗ	High-level input current	V _{CC} = 5.25 V,	V _I = 2.4 V				40	μΑ
I _I L	Low-level input current	V _{CC} = 5.25 V,	V _I = 0.4 V			-1	-1.6	mA
los	Short-circuit output current¶	V _{CC} = 5.25 V			-40	-90	-150	mA
ICC	Supply current (both drivers)	V _{CC} = 5.25 V, T _A = 25°C,	Inputs grounded, No load			47	65	mA

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C except for V_{OC}, for which V_{CC} is as stated under test conditions.

 $[\]pm \Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitudes of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low

[§] In ANSI Standard EIA/TIA-422-B, V_{OC}, which is the average of the two output voltages with respect to GND, is called output offset voltage, V_{OS}. ¶ Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.

switching characteristics over operating free-air temperature range, $V_{CC} = 5 \text{ V}$

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$C_L = 30 \text{ pF}, R_L = 100 \Omega,$	See Figure 2,		16	25	ns
tPHL	Propagation delay time, high-to-low-level output	Termination A	_		11	20	ns
^t PLH	Propagation delay time, low-to-high-level output	C 15 pF Soo Figure 2	2, Termination B		13	20	ns
tPHL	Propagation delay time, high-to-low-level output	CL = 15 pr, See rigule 2,			9	15	ns
tTLH	Transition time, low-to-high-level output	$C_L = 30 \text{ pF}, R_L = 100 \Omega,$	See Figure 2,		4	20	ns
tTHL	Transition time, high-to-low-level output	Termination A			4	20	ns
^t PZH	Output enable time to high level	$C_L = 30 \text{ pF}, R_L = 180 \Omega,$	See Figure 3		7	20	ns
tPZL	Output enable time to low level	$C_L = 30 \text{ pF}, R_L = 250 \Omega,$	See Figure 4		14	40	ns
^t PHZ	Output disable time from high level	$C_L = 30 \text{ pF}, R_L = 180 \Omega,$	See Figure 3		10	30	ns
t _{PLZ}	Output disable time from low level	$C_L = 30 \text{ pF}, R_L = 250 \Omega,$	See Figure 4		17	35	ns
	Overshoot factor	$R_L = 100 \Omega$, See Figure 2,	Termination C			10%	

[†] All typical values are at T_A = 25°C.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	EIA/TIA-422-B
VO	V _{oa} , V _{ob}
V _{OD1}	V _O
V _{OD2}	V _t
Δ V _{OD}	$ V_t - \overline{V}_t $
Voc	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $
los	I _{sa} , I _{sb}
10	I _{xa} , I _{xb}

PARAMETER MEASUREMENT INFORMATION

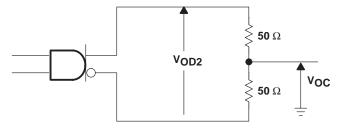
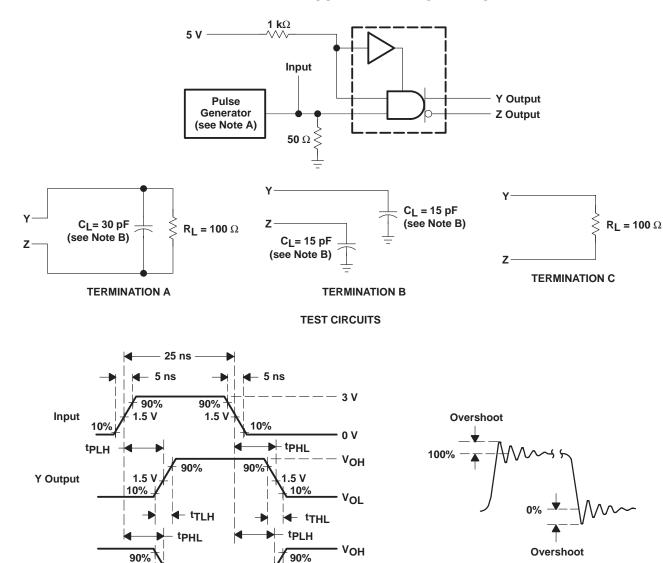



Figure 1. Differential and Common-Mode Output Voltages

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

 v_{OL}

NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, PRR $\leq 10 \text{ MHz}$.

1.5 V

10%

B. C_L includes probe and jig capacitance.

1.5 V

10%

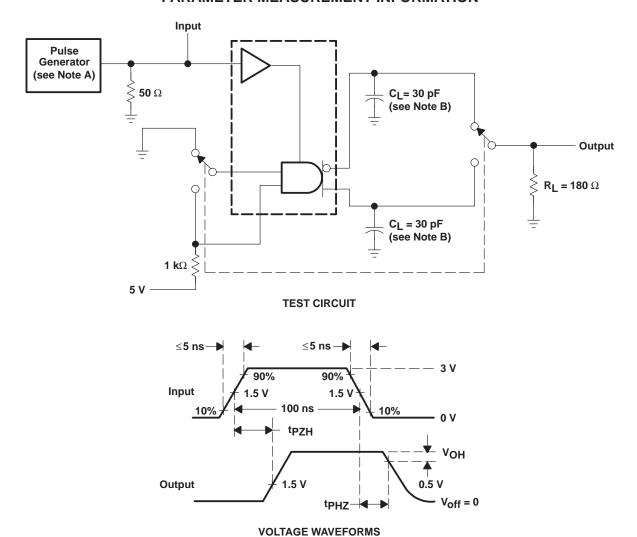
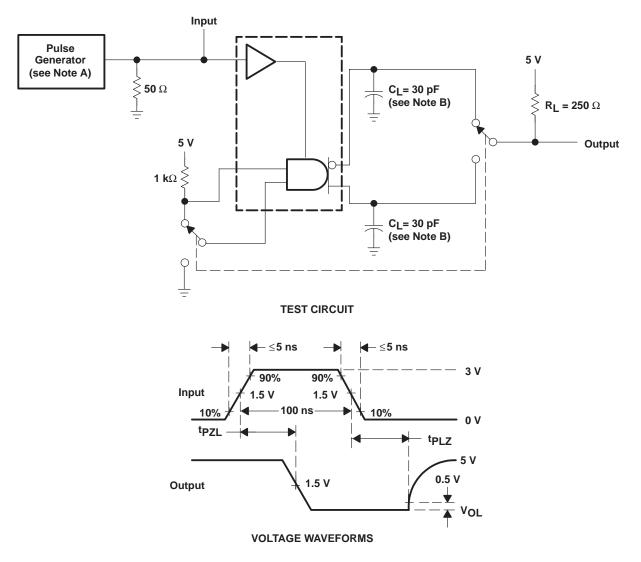

- tTHL

Figure 2. Test Circuits, Voltage Waveforms, and Overshoot Factor

Z Output

PARAMETER MEASUREMENT INFORMATION

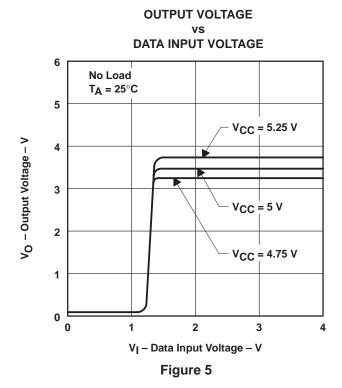


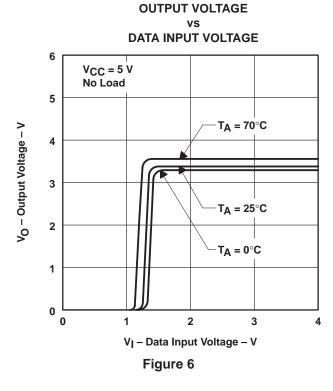
NOTES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , PRR \leq 500 kHz.

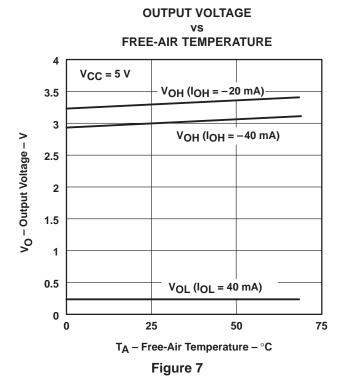
B. C_L includes probe and jig capacitance.

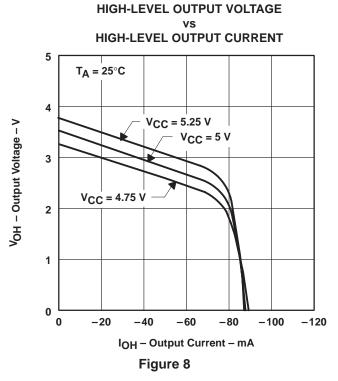
Figure 3. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

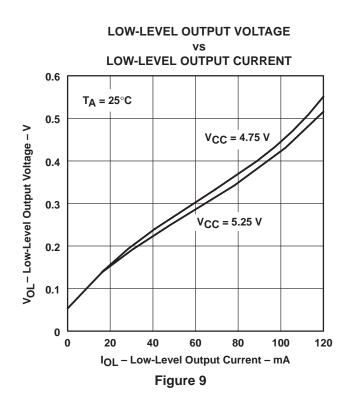

NOTES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , PRR \leq 500 kHz.

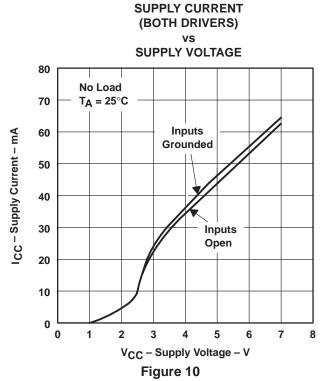

B. C_L includes probe and jig capacitance.

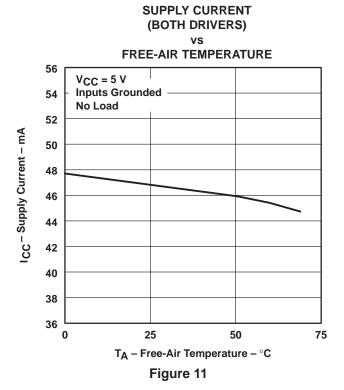

Figure 4. Test Circuit and Voltage Waveform

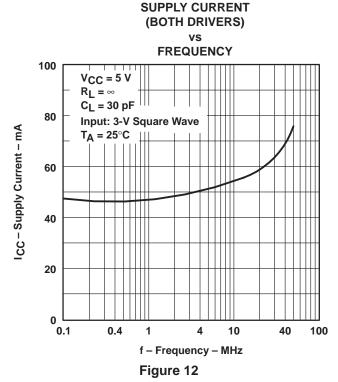


TYPICAL CHARACTERISTICS

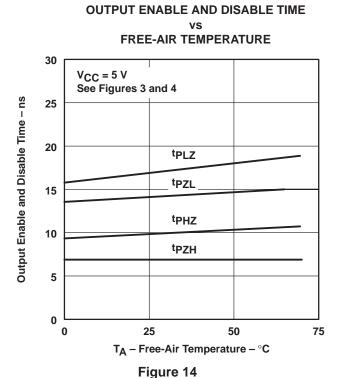








TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

FROM DATA INPUTS FREE-AIR TEMPERATURE 20 Propagtion Delay Time From Data Inputs - ns 18 **tPLH** 16 14 **tPHL** 12 10 8 6 4 V_{CC} = 5 V C_L = 30 pF 2 $R_L = 100 \Omega$ 0 75 0 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 13

PROPAGATION DELAY TIME

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated