LM158-LM258-LM358 #### Low power dual operational amplifiers #### **Features** - Internally frequency-compensated - Large DC voltage gain: 100 dB - Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) - Very low supply current per operator essentially independent of supply voltage - Low input bias current: 20 nA (temperature compensated) - Low input offset voltage: 2 mV - Low input offset current: 2 nA - Input common-mode voltage range includes negative rails - Differential input voltage range equal to the power supply voltage - Large output voltage swing 0 V to (V_{CC}⁺ 1.5V) #### **Description** These circuits consist of two independent, highgain, internally frequency-compensated op-amps, which are specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply. In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. ## 2 Absolute maximum ratings Table 1. Absolute maximum ratings | Symbol | Parameter | LM158,A | LM258,A | LM358,A | Unit | |-------------------|---|-------------------------|----------------------------|----------|------| | V _{CC} | Supply voltage | +/-16 or 32 | | | V | | V _i | Input voltage | | 32 | | V | | V _{id} | Differential input voltage | | 32 | | V | | | Output short-circuit duration (1) | | Infinite | | | | I _{in} | Input current (2) | | or 50 mA in
e = 10%, T= | | mA | | T _{oper} | Operating free-air temperature range | -55 to +125 | -40 to +105 | 0 to +70 | °C | | T _{stg} | Storage temperature range | | -65 to +150 | | °C | | Tj | Maximum junction temperature | 150 | | | °C | | R _{thja} | Thermal resistance junction to ambient ⁽³⁾ SO-8 MiniSO-8 TSSOP8 DIP8 | 125
190
120
85 | | °C/W | | | R _{thjc} | Thermal resistance junction to case ⁽³⁾ SO-8 MiniSO-8 TSSOP8 DIP8 | 40
39
37
41 | | °C/W | | | | HBM: human body model ⁽⁴⁾ | | 300 | | V | | ESD | MM: machine model ⁽⁵⁾ | 200 | | | V | | | CDM: charged device model ⁽⁶⁾ | 1.5 | | | kV | - Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC} > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short circuits on all amplifiers. - 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the $V_{\rm CC}$ voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. - 3. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values. - 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. - 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. - 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 5/ # 3 Operating conditions Table 2. Operating conditions | Symbol | Parameter | Value | Unit | |-------------------|--|--|------| | V _{CC} | Supply voltage | 3 to 30 | V | | V _{icm} | Common mode input voltage range ⁽¹⁾ | V_{CC}^{-} -0.3 to V_{CC}^{+} -1.5 | V | | T _{oper} | Operating free air temperature range LM158 LM258 LM358 | -55 to +125
-40 to +105
0 to +70 | °C | When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range. ### 4 Electrical characteristics Table 3. Electrical characteristics for $V_{CC}^+ = +5 \text{ V}$, $V_{CC}^- = \text{Ground}$, $V_o = 1.4 \text{ V}$, $T_{amb} = +25^{\circ}\text{C}$ (unless otherwise specified) | Symbol | Parameter | Min. | Тур. | Max. | Unit | |------------------|---|----------|----------|--|-------| | V _{io} | Input offset voltage ⁽¹⁾ LM158A LM258A, LM358A LM158, LM258 LM358 | | 1 2 | 2
3
5
7 | mV | | | $T_{min} \le T_{amb} \le T_{max}$
LM158A, LM258A, LM358A
LM158, LM258
LM358 | | | 4
7
9 | | | DV _{io} | Input offset voltage drift
LM158A, LM258A, LM358A
LM158, LM258, LM358 | | 7
7 | 15
30 | μV/°C | | l _{io} | Input offset current | | 2
2 | 10
30
30
40 | nA | | DI _{io} | Input offset current drift
LM158A, LM258A, LM358A
LM158, LM258, LM358 | | 10
10 | 200
300 | pA/°C | | l _{ib} | Input bias current $^{(2)}$ LM158A, LM258A, LM358A LM158, LM258, LM358 $T_{min} \leq T_{amb} \leq T_{max}$ LM158A, LM258A, LM358A LM158, LM258, LM358 | | 20
20 | 50
150
100
200 | nA | | A _{vd} | Large signal voltage gain $V_{CC}^{+}=+15~V,~R_L=2~k\Omega,~~V_o=1.4~V~to~11.4~V$ $T_{min}\leq T_{amb}~\leq T_{max}$ | 50
25 | 100 | | V/mV | | SVR | Supply voltage rejection ratio $\begin{aligned} &V_{CC}^{+}=5 \text{ V to } 30 \text{ V, } R_{S} \leq 10 \text{ k}\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max} \end{aligned}$ | 65
65 | 100 | | dB | | Icc | Supply current, all amp, no load $T_{min} \le T_{amb} \le T_{max} \ V_{CC}^{+} = +5 \ V$ $T_{min} \le T_{amb} \le T_{max} \ V_{CC}^{+} = +30 \ V$ | | 0.7 | 1.2
2 | mA | | V _{icm} | Input common mode voltage range $V_{CC}^{+}= +30 \ V^{(3)}$ $T_{min} \le T_{amb} \ \le T_{max}$ | 0 0 | | V _{CC} ⁺ -1.5
V _{CC} ⁺ -2 | V | 5/19 Electrical characteristics LM158-LM258-LM358 Table 3. Electrical characteristics for $V_{CC}^+ = +5 \text{ V}$, $V_{CC}^- = \text{Ground}$, $V_o = 1.4 \text{ V}$, $T_{amb} = +25 ^{\circ}\text{C}$ (unless otherwise specified) (continued) | Symbol | Parameter | Min. | Тур. | Max. | Unit | |----------------------------------|---|----------------------|----------|----------|--------------------------------------| | CMR | Common mode rejection ratio $R_s \leq 10 \ k\Omega$ $T_{min} \leq T_{amb} \ \leq T_{max}$ | 70
60 | 85 | | dB | | I _{source} | Output current source
V_{CC}^+ = +15 V, V_o = +2 V, V_{id} = +1 V | 20 | 40 | 60 | mA | | I _{sink} | Output sink current $V_{CC}^+ = +15 \text{ V}, V_o = +2 \text{ V}, V_{id} = -1 \text{ V} $ $V_{CC}^+ = +15 \text{ V}, V_o = +0.2 \text{ V}, V_{id} = -1 \text{ V}$ | 10
12 | 20
50 | | mΑ
μΑ | | V _{OH} | High level output voltage $\begin{aligned} R_L &= 2 \ k\Omega, \ \ V_{CC}{}^+ = 30 \ V \\ T_{min} &\leq T_{amb} \ \leq T_{max} \\ R_L &= 10 \ k\Omega, \ \ V_{CC}{}^+ = 30 \ V \\ T_{min} &\leq T_{amb} \ \leq T_{max} \end{aligned}$ | 26
26
27
27 | 27
28 | | V | | V _{OL} | Low level output voltage $R_L = 10 \text{ k}\Omega$ $T_{min} \le T_{amb} \le T_{max}$ | | 5 | 20
20 | mV | | SR | Slew rate V_{CC}^+ = 15 V, V_i = 0.5 to 3 V, R_L = 2 k Ω , C_L = 100 pF, unity gain | 0.3 | 0.6 | | V/µs | | GBP | Gain bandwidth product V_{CC}^+ = 30 V, f = 100 kHz, V_{in} = 10 mV, R_L = 2 k Ω C_L = 100 pF | 0.7 | 1.1 | | MHz | | THD | Total harmonic distortion $f=1 \text{ kHz, } A_v=20 \text{ dB, } R_L=2 \text{ k}\Omega, V_o=2 \text{ V}_{pp}, \\ C_L=100 \text{ pF, } V_O=2 \text{ V}_{pp}$ | | 0.02 | | % | | e _n | Equivalent input noise voltage
$f = 1 \text{ kHz}, R_s = 100 \Omega, V_{CC}^+ = 30 \text{ V}$ | | 55 | | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ | | V _{o1} /V _{o2} | Channel separation ⁽⁴⁾ 1 kHz \leq f \leq 20 kHz | | 120 | | dB | ^{1.} $V_0 = 1.4 \text{ V}, R_S = 0 \Omega, 5 \text{ V} < V_{CC}^+ < 30 \text{ V}, 0 < V_{ic} < V_{CC}^+ - 1.5 \text{ V}$ **577** ^{2.} The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}⁺ - 1.5 V, but either or both inputs can go to +32 V without damage. ^{4.} Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies. ## 6.1 DIP8 package information Figure 27. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data | | Dimensions | | | | | | |------|-------------|------|-------|--------|-------|-------| | Ref. | Millimeters | | | Inches | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | | | 5.33 | | | 0.210 | | A1 | 0.38 | | | 0.015 | | | | A2 | 2.92 | 3.30 | 4.95 | 0.115 | 0.130 | 0.195 | | b | 0.36 | 0.46 | 0.56 | 0.014 | 0.018 | 0.022 | | b2 | 1.14 | 1.52 | 1.78 | 0.045 | 0.060 | 0.070 | | С | 0.20 | 0.25 | 0.36 | 0.008 | 0.010 | 0.014 | | D | 9.02 | 9.27 | 10.16 | 0.355 | 0.365 | 0.400 | | E | 7.62 | 7.87 | 8.26 | 0.300 | 0.310 | 0.325 | | E1 | 6.10 | 6.35 | 7.11 | 0.240 | 0.250 | 0.280 | | е | | 2.54 | | | 0.100 | | | eA | | 7.62 | | | 0.300 | | | eB | | | 10.92 | | | 0.430 | | L | 2.92 | 3.30 | 3.81 | 0.115 | 0.130 | 0.150 | **577** ## 7 Ordering information Table 8. Order codes | Order code | Temperature range | Package | Packaging | Marking | |---|-------------------|----------------------------|-----------------------|-------------------| | LM158N | | DIP8 | Tube | LM158N | | LM158D
LM158DT | -55°C, +125°C | SO-8 | Taba antara 0 mal | 158 | | LM158YD ⁽¹⁾
LM158YDT ⁽¹⁾ | | SO-8
Automotive grade | Tube or tape & reel | 158Y | | LM258AN
LM258N | -40°C, +105°C | DIP8 | Tube | LM258A
LM258N | | LM258AD
LM258ADT | | SO-8 | Tubo or topo 9 rool | 258A | | LM258AYD ⁽¹⁾
LM258AYDT ⁽¹⁾ | | SO-8
Automotive grade | Tube or tape & reel | 258AY | | LM258D
LM258DT | | SO-8 | Tube or tape & reel | 258 | | LM258YD ⁽¹⁾
LM258YDT ⁽¹⁾ | | SO-8
Automotive grade | — Tube of tape & reef | 258Y | | LM258PT
LM258APT | | TSSOP8 | T 0I | 258
258A | | LM258YPT ⁽²⁾
LM258AYPT ⁽²⁾ | | TSSOP8
Automotive grade | Tape & reel | 258Y
258AY | | LM258AST
LM258ST | | MiniSO-8 | Tape & reel | K408
K416 | | LM358N
LM358AN | | DIP8 | Tube | LM358N
LM358AN | | LM358D
LM358DT | | SO-8 | | 358 | | LM358YD ⁽¹⁾
LM358YDT ⁽¹⁾ | | SO-8
Automotive grade | Tube or tape & reel | 358Y | | LM358AD
LM358ADT | 0°C, +70°C | SO-8 | | 358A | | LM358PT
LM358APT | | TSSOP8 | Tape & reel | 358
358A | | LM358YPT ⁽²⁾
LM358AYPT ⁽²⁾ | | TSSOP8
Automotive grade | Tape & Teel | 358Y
358AY | | LM358ST
LM358AST | | MiniSO-8 | Tape & reel | K405
K404 | Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 57 ^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.